HỌC VIỆN KỸ THUẬT QUẢN SỰ
KHOA CÔ KHÍ - BỘ MÓN CÔ HỌC VẤT RĂN

BÀI TẬP LỚN
SỨC BỀN VẬT LIỆU

LƯU HẠNH NỘI BỘ

HÀ NỘI - 2003
c. Loài III: Thanh nhieu nhíp

d. Loài IV: Khung phảng

e. Loài V: Thanh cong

4. Bài giải mối số 1

II. Bài tập lơn số 2 - Đắc trang hình học của hình phẳng

1. Nội dung yêu cầu

2. Bằng số liên

3. Các dạng số độ biếu toàn

4. Bài giải mối số 2

III. Bài tập lớn số 3 - Tính thanh chịu lực phục tạp

1. Nội dung yêu cầu

2. Bằng số liên

3. Các dạng số độ biếu toàn

4. Bài giải mối số 3

IV. Bài tập lớn số 4 - Tính ổn định của thanh chịu nền

1. Nội dung yêu cầu

2. Bằng số liên

3. Các dạng số độ liên kết thanh

4. Các dạng mặt cắt loài 1, với vật liệu gốm

5. Các dạng mặt cắt loài 2, với vật liệu thép

6. Các dạng mặt cắt loài 3, với vật liệu thép

7. Bài giải mối số 4

V. Bài tập lớn số 5 - Tính hệ thanh siêu định

1. Nội dung yêu cầu

2. Bằng số liên

3. Các dạng số độ biếu toàn

4. Bài giải mối số 5

Phần III- Phúc lục 1

150

151

153

158

165
I. Các bài thi nghiệm cơ học

1. Bài 1- Xác định đặc trưng cơ học bằng thí nghiệm kéo

2. Bài 2- Xác định đặc trưng cơ học bằng thí nghiệm nén

3. Bài 3- Thi nghiệm xác định mô đun đàn hồi của vật liệu

4. Bài 4- Thi nghiệm xác định hệ số biến dạng ngang của vật liệu

5. Bài 5- Thi nghiệm xoắn các mâu thép và mâu gang

6. Bài 6- Thi nghiệm xác định mô đun đàn hồi khi trượt của vật liệu

7. Bài 7- Thi nghiệm xác định hệ số độ dai và độ của vật liệu

8. Bài 8- Thi nghiệm xác định hệ số tiếp xúc bằng saút

9. Bài 9- Xác định ứng suất pháp của đam chịu ứng thuận tự

10. Bài 10- Xác định độ vồng, gạch xoay của đam chịu

 oun ngang pháp

11. Bài 11- Xác định ứng suất khi kéo lệch tâm

12. Bài 12- Xác định độ vồng của đam chịu oun xiên

13. Bài 13- Xác định lực tối hạn khi thanh bị nén độc trực

14. Bài 14- Nghiên cứu trưởng phần bọ ứng suất bằng thiết bị

 quang đàn hồi

15. Bài 15- Nghiên cứu hiện tượng phụ huy mỡ của vật liệu, cách xây

 dụng đường cong mỡ bằng máy mỡ oun thuận tự và

 oun ngang pháp

+ Phục lục 1: Các bảng tra cứu

- Bảng tra thể định hình: thể gọc, thể chữ L, chữ I, chữ U
- Bảng tra hệ số oun độc

Thị liệu tham khảo
LỚI NÓI ĐẦU

Để giúp sinh viên nắm vững kiến thức môn học "Sức bền vật liệu"; ngoài việc nghiên cứu kỹ lý thuyết trong các giải trình, bài giảng, còn phải vận dụng giải các bài toán từ đơn giản đến phức tạp để luyện tập trong các chương của môn học.

Bài tập lớn "Sức bền vật liệu" sẽ luyện cho sinh viên vận dụng kiến thức tổng hợp để giải các bài toán trong kỹ thuật, để được áp dụng vào các môn học khác tiếp sau, các đề án môn học và đề án tốt nghiệp. Xa hơn nữa là giúp tích toán độ bền trong quá trình công tác của người kỹ sư sau này.

Cuốn sách được cấu trúc thành ba phần:

Phần I: Tóm tắt lý thuyết các chương cơ bản của môn học "Sức bền vật liệu"

Phần II: Phân hướng dẫn làm 5 bài tập lớn cần thiết nhất; Bao gồm phần đề bài, các bảng trả số liệu, so đồ bài toán, cách trình bày, bài giải mẫu.

Phần III: Phụ lục- Bao gồm các bài thí nghiệm cơ học để xác định các tính chất cơ học của vật liệu .

Chúng tôi hy vọng các bạn sinh viên nếu thực sự say mê làm các bài tập này, thì sẽ thành công trong giai đoạn tiếp sau.

Các tác giả
PHÂN I
TÔM TÁT LÝ THUYẾT
CHƯƠNG I: NHỮNG KHẢI NIỆM CƠ BẢN

Ngoài lục là lục tác dụng từ vật thể khác hoặc từ môi trường xung quanh lên vật thể ta xét, bao gồm tại trọng và phần lực liên kết.

Tại trọng là lực tác dụng lên vật thể, đã biết tri số, phương, chiều và điểm đặt.
Phần lực là lực phát sinh tại vị trí liên kết, tiếp giáp giữa vật thể đang xét với các vật thể khác hoặc môi trường xung quanh, xuất hiện do tác dụng của tại trọng hoặc của các nguyên nhân khác.

Theo quy luật phân bố, tại trọng được chia thành:
- Tại trọng phần bố theo thể tích có thể nguyên [lục/chiều dài³].
- Tại trọng phần bố theo diện tích có thể nguyên [lục/chiều dài²].
- Tại trọng phần bố theo chiều dài có thể nguyên [lục/chiều dài].
- Tại trọng tập trung.

Theo tính chất tác dụng, tại trọng được chia thành tại trọng tĩnh và tại trọng động.
- Tại trọng tĩnh tác dụng lên vật thể không gây ra lực quan tính trên các phần từ trong quá trình biến dạng.
- Tại trọng động tác dụng lên vật thể gây ra lực quan tính, gồm tại trọng và chấn, tại trọng biến đổi, tại trọng không đổi đặt động nợ và tại trọng ngược nhân.

Nơi lực là độ tăng của lực liên kết giữa các phần từ cấu vật thể khi vật thể bị biến dạng dưới tác dụng của ngoại lực. Nơi lực được xác định bằng phương pháp mặt cắt.
Trong hệ không gian (trường hợp tổng quát), trên mặt cắt của vật thể (chi xét ở dạng thanh) có 6 thành phần nơi lực là:

\[N_i - lục doc; \]
\[Q_i, Q_j - lục cat; \]
\[M_i, M_j - mo men uon; \]
Sử dụng phương pháp xác định phương trình cạnh bằng hình học:

\[
\begin{align*}
N_x + \sum P_x &= 0; \\
M_y + \sum m_y (P_i) &= 0; \\
Q_y + \sum P_y &= 0; \\
M_z + \sum m_z (P_i) &= 0;
\end{align*}
\] (1)

Trong đó: \(P_x, P_y, P_z\) là lăn được chiếu lên trục x, y, z của ngoại lực thứ i tác dụng trên phần đang xét;

\(M_x(P), M_y(P), M_z(P)\) - Lăn lực là mô men đối với các trục toạ độ x, y, z của ngoại lực thứ i.

Trong hệ phương sai tất cả ngoại lực cùng nằm trong mặt phẳng xy của hệ, các thành phần ngoại lực tương ứng sẽ là \(N_x, Q_y, M_z\) (hình 2). Khi quy ước chiếu đường của ngoại lực phần \(q(z)\) tác dụng là hướng lên trên về chung hệ trục toạ độ như trên hình 3, ta có các quan hệ về phân Giải \(M_z, Q_y\) và \(q\):

\[
\frac{dQ_y}{dz} = q
\] (2)

\[
\frac{dM_z}{dz^2} = q
\]

Hình 3
Điều đó nói luc là đến thỉ biểu diễn sự biểu hiện của các thành phần nội lực đó theo trực thăng.

Khi vê biểu độ nội lực cần ưu tiên theo một sở quy tắc sau đây:
Lực độ N_x được xem là lượng khi gây kéo với phần dạng xét (Hình 4a).
Lực cát Q_x được xem là lượng khi xà hưởng làm quay phần dạng xét thuận chiều kim đồng hồ (Hình 4b).
Mô men uốn M_x được xem là lượng khi làm cảng thể doси của thanh tài mặt cát dạng xét (hình 4c). Không ghi đầu trên biểu độ mô men mà vê các ứng độ ở phia thằng cảng.

\[\begin{align*}
N_x & \rightarrow N, & Q_x & \rightarrow Q, & \left(M_x \rightarrow M \right) \\
N_x & \rightarrow N, & Q_x & \rightarrow Q, & \left(M_x \rightarrow M \right)
\end{align*} \]

Hình 4

Để vẽ biểu độ nội lực cần thực hiện theo trình tự:
- Xác định các thành phần phân lực liên kết cần thiết.
- Phân đoạn và dạng phương pháp mặt các định kỳ luật phân bố của các thành phần nội lực trên các đoạn thành.
- Dựa vào quy luật phân bố của từng thành phần nội lực, vẽ biểu độ cho từng loại nội lực.
- Kiểm tra lại biểu độ nội lực.

Để kiểm tra và vẽ thành biểu độ nội lực, cần nắm vững những nhận xét về dạng biểu độ suy ra từ các quan hệ với phần (2) và các nhận xét về bước nhảy của biểu độ đối với các thành thằng.

+ Trong thành không có lực phân bố ($Q = 0$), biểu độ lực cát Q_x là hằng số, mô men uốn M_x là dương bậc nhất. Trên đoạn thành có lực phân bố $Q = \text{const}$, biểu độ Q_x là dương bậc nhất, M_x là dương bậc hai. Bạc của biểu độ lực cát lớn hơn một bậc biểu độ lực phân bố, bậc của biểu độ mô men uốn lớn hơn bậc của biêt độ lực phân bố Q hai bậc.
- Trong đồ thị thủ công $ q > 0, Q_{1}$ đồng biến; Trong đồ thị thủ công $ q < 0, Q_{1}$ nghịch biến. Tải mặt cắt $ q = 0, Q_{1}$ đạt cực trị.

+ Trong đồ thị thủ công $ Q_{1} > 0, M_{1}$ đồng biến; Trong đồ thị thủ công $ Q_{1} < 0, M_{1}$ nghịch biến; Tải mặt cắt $ Q_{1} = 0, M_{1}$ đạt cực trị:
 - Cực đại khi $ q > 0$ (có chiều $ q $ hướng $ x $, $ y $)
 - Cực tiểu khi $ q < 0$ (có chiều $ q $ hướng $ z $,

+ Bê lôm của biểu đồ mô men uốn $ M_{1}$ hướng $ y$, hiệu ứng tác động của lực phrê của.

+ Trong hợp hệ có kết cấu độ xích chịu tải trọng độ xích, biểu đồ mô men uốn sẽ độ xích, biểu độ lực cắt sẽ phân độ xích qua lực của các hệ. Nếu kết cấu độ xích chịu tải phân độ xích thì biểu đồ lực cắt độ xích và biểu độ mô men uốn phân độ xích.

+ Tại mặt cắt có độ lực tải trọng, biểu độ lực cắt có bước nhảy, chiều nhảy theo chiều lực tải trọng, trị số bước nhảy bằng trị số lực tải trọng.

+ Tại mặt cắt có mố men tải trọng, biểu độ mô men uổc có bước nhảy, trị số bước nhảy bằng trị số mô men tải trọng, chiều nhảy sao cho trên biểu độ tạo thành từng lực chỉnh lại mô men tải trọng $ d_{i}$.

12
Chương II: KÉO – NÉN DUNG TÂM

Môń thanh được gọị là kéo hoặc nén dung tām, nên dưới tác dụng của ngoài lực, trên mặt cắt ngang của thanh chỉ có nó thành phân nơi lực là lực độc N, khác nhōng.

Lực độc N, được xem là dạng khi nó gây kéo với phân ta xệt (hình la), xem là tâm khi nó gây nén vô phân ta xệt (hình lb).

Hình 1

Ưng suát pháp σₐ tại một điểm bất kỳ trên mặt cắt ngang được tính theo công thức:

\[\sigma_a = \frac{N_a}{F} \]

(1)

Trong đó:

Nₐ – giá trị lực độc trên mặt cắt ngang chứa điểm cần tìm ước suát;
F – diện tích mặt cắt ngang;

Trên mặt cắt nghiêng bất kỳ có pháp tuyền n tạo góc a với phương trực thanh, có hai thành phần ửng suát: ửng suát pháp σₐ và ửng suát tiệp τₓ xác định qua σₐ.

\[\sigma_a = \frac{1}{2} \sigma_a (1 + \cos 2a); \quad \tau_a = \frac{1}{2} \sigma_a (\sin 2a) \]

(2)

Biến dạng độc tương đối giữa hai mặt cắt ngang cách nhau một đoạn y, chiều dài của thanh .

\[e_s = \frac{N_a}{E} \]

(3)

Quan hệ giữa biến dạng ngang tương đối – biến dạng do sự thay đổi kích thước ngang của thanh và biến dạng độc tương đối có quan hệ với nhau theo công thức:

13
\[c'(e, e_r) = -\mu e \]
\[\frac{c''}{\sqrt{e}} = \frac{-\mu e}{\sqrt{e}} \]

(4)

Trong đó:
- \(\mu \) - hệ số biến dạng ngang (hệ số poisson) của vật liệu thành.
- Biến dạng doc tuyền đó giữa hai mặt cắt ngang cách nhau một đoạn.
- \(\Delta l = \frac{1}{\frac{e}{E} + \frac{e_r}{F}} \int_{0}^{l} N \, dz \)

(5)

Khi \(N = \text{const}, \frac{E}{F} = \text{const} \) trên toàn chiều dài l, công thức (5) có dạng
- \(\Delta l = \frac{N}{\frac{E}{F}} \)

(6)

Đối với thanh gồm l đoạn, trên mỗi đoạn có lực doc và độ cứng kéo nên EF không đổi ta có:
- \(\Delta l = \frac{1}{\frac{e}{E} + \frac{e_r}{F}} \sum_{i=1}^{l} N_i \, dz \)

(7)

Trong quá trình lăn về thành phải đảm bảo điều kiện bền và điều kiện cứng:
- \(\sigma_{\text{max}} \leq [\sigma]_h \) ; \(\sigma_{\text{max}} \leq [\sigma]_e \)

(8)
- \(\text{Vật liệu đòn}: \sigma_{\text{max}} = \text{max} (\sigma_{\text{max}}, \sigma_{\text{min}}) \leq [\sigma] \)

(9)

Trong đó:
- \(\sigma_{\text{max}} = \left\{ \begin{array}{ll} \frac{N}{F} & \text{Khi } F = \text{const trên toàn chiều dài thanh}; \\ \frac{N}{F} & \text{Khi } F \neq \text{const trên toàn chiều dài thanh}; \end{array} \right. \)

(10)

Từ điều kiện bền (8),(9) ta có ba dạng bất toàn cơ bản:
- Kiểm tra bền.
- Chọn kết thúc mặt cắt ngang.
- Xác định tài trong cơ chế.
- Đổi kết cấu cùng của thành chịu kéo, nên dừng doc là:
- \(e_{\text{max}} \leq [e]; \Delta l \leq [\Delta l] \)
Trong đó: $F = \left(\frac{N}{EF}\right)$; Khi $F = \text{const trên toàn chiều dài thanh}$;$

Khi $F \neq \text{const trên toàn chiều dài thanh}$.

Từ điều kiện cùng (10), ta có ba bài toán cơ bản:

- Kiểm tra độ cứng.
- Chọn kích thước mặt cắt ngang.
- Xác định tài trọng cho phép.

Bài toán siêu tĩnh trong kẽo nên dùng tam là những bài toán mà chỉ với các phương trình cần bằng tĩnh học thì chưa thể xác định được nỗ lực, ứng suất trong thanh hoặc hệ thanh. Để giải cần thiết lập các phương trình bổ sung từ điều kiện biến dạng.

Trình tự giải bài toán siêu tĩnh được tiến hành như sau:

- Viết các phương trình cần bằng tĩnh học chứa các nỗ lực chưa biết vào điều kiện tĩnh học.
- Xét hệ trong trạng thái biến dạng, viết các phương trình bổ sung dựa vào điều kiện biến dạng.
- Biểu diễn các thành phần biến dạng qua các nỗ lực trên cơ sở định luật Hooker(6).
- Giải kết hợp hệ phương trình cần bằng tĩnh học và hệ phương trình biến dạng bổ sung, ta xác định được các lực trong hệ.
Chương III: TRANG THÁI ÚNG SUẤT

Trạng thái ứng suất tại một điểm có thể diễn biến theo các trạng thái ứng dụng trên tđc các mặt với cùng bê cof thể di qua điểm đó, và được xác định bởi một tenxor đối xứng cấp hai có sự thành phần ứng suất độc lập:

- Thành phần ứng suất phập $\sigma_1, \sigma_2, \sigma_3$
- Thành phần ứng suất tiếp $\tau_{xy}, \tau_{yz}, \tau_{zx}, \tau_{xx} = \tau_{yy} = \tau_{zz} = \tau$.

$$
\mathbf{T} = \begin{pmatrix}
\sigma_1 & \tau_{xy} & \tau_{xz} \\
\tau_{yx} & \sigma_2 & \tau_{yz} \\
\tau_{zx} & \tau_{zy} & \sigma_3
\end{pmatrix}
$$

(1)

Vi tenxor ứng suất \mathbf{T} (1) là tenxor đối xứng, nên bao giờ cũng tồn tại phương của các trực tuyến, mà ứng với các phương này tất cả các thành phần của tenxor ngoại các thành phần trên đường chéo chính đều bằng 0:

$$
\mathbf{T} = \begin{pmatrix}
\sigma_1 & 0 & 0 \\
0 & \sigma_2 & 0 \\
0 & 0 & \sigma_3
\end{pmatrix}
$$

Các thành phần $\sigma_1, \sigma_2, \sigma_3$ trên đường chéo chính được gọi là các ứng suất chính ($\sigma_1 > \sigma_2 > \sigma_3$, theo thứ tự).

Trạng thái ứng suất tại một điểm được phân làm ba loại:
- Trạng thái ứng suất khía: có ba ứng suất chính khác nhau.
- Trạng thái ứng suất phẳng: có hai ứng suất chính khác nhau.
- Trạng thái ứng suất đơn: có một trong ba ứng suất chính khác nhau.

Với trạng thái ứng suất phẳng: ba thành phần ứng suất σ_1, σ_2, τ xác định trạng thái ứng suất tại điểm đó. Bằng phương pháp giải tích hoặc phương pháp hình học ta xác định được: ứng suất phập σ_3 và ứng suất tiếp τ trên mặt cắt ngang có phương tuyến n. Tạo góc α với phương x (Hình 1).

$$
\begin{align*}
\sigma_3 &= \frac{1}{2}(\sigma_1 + \sigma_2) - \frac{1}{2}(\sigma_1 - \sigma_2) \cos 2\alpha - \tau_n \sin 2\alpha \\
\tau &= \frac{1}{2}(\sigma_1 - \sigma_2) \sin 2\alpha + \tau_n \cos 2\alpha
\end{align*}
$$

(2)

Phương chinh (góc α_0 giữa phương của ứng suất chính và phương x)
Các ứng suất chính - ứng suất pháp cực trị:

$$\sigma_{max} = \frac{1}{2}(\sigma_x + \sigma_y) \pm \frac{1}{2}\sqrt{\left(\sigma_x - \sigma_y\right)^2 + 4\tau_{xy}^2} \tag{4}$$

Góc β giữa pháp tuyến của mặt có ứng suất tiếp cực trị và phương x:

$$\tan 2\beta = \frac{\sigma_y - \sigma_x}{2\tau_{xy}} \tag{5}$$

Từ (3) và (4) ta có:

$$\tau_{max} = \frac{1}{2}\sqrt{\left(\sigma_x - \sigma_y\right)^2 + 4\tau_{xy}^2} \tag{6}$$

Dựa vào biểu thức (2) ta thiết lập được sự liên hệ giữa σ_a và τ_a dưới dạng một phương trình vòng tròn gọi là vòng Mohr ứng suất.
\[(\sigma_n - \frac{\sigma_x + \sigma_y}{2})^2 + \tau_n^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2\]

Trình tự vẽ vòng Mohr ứng suất:

- Xác định tâm vòng Mohr:
 \[C \left(\frac{\sigma_x + \sigma_y}{2}, 0\right)\]

- Xác định cực vòng Mohr: \[D (\sigma_p, \tau_p)\]

- Về vòng trên tâm \(C\) bán kính \(CD\) ta được vòng Mohr ứng suất (hình 2)

Trạng thái ứng suất phẳng của một điểm gọi là trạng thái thuận тuy khi trên các mặt của nó chỉ có ứng suất tiếp tác đứng (hình 3).

Hình 3

Các đặc điểm cần trạng thái thuận tuyệt:

+ \(\sigma_0 = \sigma_3 = 0\)

+ Phương chinh tạo với mặt trực một góc 45°.

+ Ứng suất tiếp trên các mặt thẳng thắn tự đầy các ứng suất tiếp cực tri.

+ Ứng suất phù hợp trên hai mặt bất kỳ trong góc giọt nhàu bằng nhau và tương ứng nhau.

Giữa các thành phần ứng suất và biến dạng tại một điểm của vật thể liên hệ với nhau bởi định luật Hooke tổng quát:

\[e_1 = \frac{1}{E} \left[\sigma_1 - \mu(\sigma_2 + \sigma_3)\right] ; \quad \gamma_{xy} = \frac{\tau_{xy}}{G}\]
\[\varepsilon_r = \frac{1}{E} [\sigma_r - \mu (\sigma_s + \sigma_i)] \quad ; \quad \gamma_m = \frac{E}{G} \] \hspace{1cm} (8) \\
\[\varepsilon_i = \frac{1}{E} [\sigma_i - \mu (\sigma_s + \sigma_r)] \quad ; \quad \gamma_m = \frac{3\mu}{G} \]

Trong đó \(G \) là mô đun dẫn dời trực của vật liệu và có quan hệ với \(E \) như sau:
\[G = \frac{E}{2(1+\mu)} \]

Nếu ký hiệu \(\theta \) là biến dạng thể tích tương đối của phần tử, ta có định luật Hooke về biến dạng thể tích:
\[\theta = 3 \left(1 - 2\mu \right) \sigma_0 \] \hspace{1cm} (9)
Với:
\[\theta = \varepsilon_s + \varepsilon_i + \varepsilon_r; \]
\[\sigma_s = \frac{1}{3} (\sigma_r + \sigma_s + \sigma_i). \]
Chương IV: XOÁN THUẬN TUYỂN THANH THẲNG

Một thanh được gọi là xoắn thuận tuyển, nếu dưới tác dụng của ngoài lực trên mặt cắt ngang chỉ có một thanh phần nội lực là mô men xoắn M_{x}, M_{y} được xem là đường khi nhìn vào mặt cắt thủy chuẩn quay của mô thụa chiều kim đồng hồ (hình 1).

![Image of a twisted beam](image-url)

Hình 1

Ương suất tiếp tại một điểm bất kỳ trên mặt cắt ngang hình tròn và hình vánh bán được tính theo công thức:

$$\tau_p = \frac{M_z}{J_p} \rho$$

(1)

Trong đó:

- M_z: Giả trị mô men xoắn tại mặt cắt ngang cần tính ương suất;
- ρ: Khối lượng từ điểm tiếp ương suất tới tâm tâm mặt cắt ngang;
- J_p: mô men quán tính/doc cực của mặt cắt đối với trọng tâm;
- πD^4 $\frac{32}{\pi D^4} (1 - \alpha^2) \approx 0.1D^4 (1 - \alpha^2)$

Với mặt cắt trên đường kính D. Vành kính đường kính d và D.

Từ (1) ta thấy, ương suất tiếp τ_p phụ thuộc vào quỹ luật bends mô men của đơn gán mặt cắt (hình 2) đạt giả trí lớn nhất tại các điểm trên chu vi.

$$\tau_{max} = \frac{M_z}{W_p}$$

(2)

Trong đó W_p là mô men chống xoắn của mặt cắt.
\[
\begin{align*}
W_s &= \frac{J}{D^2} = \left\{ \begin{array}{ll}
\frac{6D^3}{16}, & \text{với mặt cắt mòn}\n\frac{6D^3 (1-\alpha^*)}{16}, & \text{với mặt cắt vánh khẩn}
\end{array} \right.
\end{align*}
\]

Hình 2

Trạng thái ứng suất của một điểm trong thân chi nhựa xanh thân tuy là trạng thái trực thân, có \(\sigma_1 = -\sigma_2 = \sigma_t \), phương Chromium góc 45° so với trục thân.

Góc xoa xốy đổi \(\theta \) - góc xoa xốy tương đối giữa hai mặt cắt ngang cách nhau giữa một đoạn vị chi nhựa. Đo với thân matrix cắt trên và mặt cắt hinh vánh khẩn:

\[\theta = \frac{M_s}{GJ_s} \]

(3)

Góc xoa xốy tương đối giữa hai mặt cắt ngang cách nhau khoảng l:

\[\varphi = \frac{M_s}{GJ_s} \]

(4)

Nếu trên đoạn l các đại lượng \(M_s, GJ_s \) không đổi ta có:

\[\varphi = \frac{M_s}{GJ_s} \]

(5)

Nếu thân gồm n đoạn, mà trên từng đoạn các đại lượng \(M_s, GJ_s \) không đổi ta có:

\[\varphi = \sum_{i=1}^{n} \frac{M_i}{GJ_i} = \sum_{i=1}^{n} \frac{M_i^t}{GJ_i^t} \]

(6)

Trong quá trình chịu xoa thân phải đảm bảo đủ kiến bên và điều kiện căng. T2

21
+ Điều kiện bên của thanh chịu xói mòn từ lực...

\[\tau_{\text{max}} \leq [\tau] , \] \hspace{1cm} (7)

Trong đó:

\[\tau_{\text{max}} = \left\{ \begin{array}{ll}
\frac{M_{\text{xin}}}{W_p} , & \text{Khi thanh có dạng kinh không đổi}

\left(\frac{M_{\text{xin}}}{W_p} \right)_{\text{max}} , & \text{Khi thanh có dạng kinh thay đổi theo chiều dài}
\end{array} \right. \]

+ Điều kiện cổng của thanh chịu xói mòn dạng việt như sau:

\[\theta_{\text{max}} \leq [\theta] . \] \hspace{1cm} (8)

Trong đó:

\[\theta_{\text{max}} = \left\{ \begin{array}{ll}
\frac{M_{\text{xin}}}{GJ_p} , & \text{Với thanh có độ cổng GJp không đổi theo chiều dài;}

\left(\frac{M_{\text{xin}}}{GJ_p} \right)_{\text{max}} , & \text{Với thanh có độ cổng GJp thay đổi theo chiều dài;}
\end{array} \right. \]

Xuất phát từ điều kiện bên (7), điều kiện cổng (8) và dữ liệu dạng bài toán cơ bản:

- Kiểm tra bên và kiểm tra độ cong.

- Chọn kích thước mặt cắt ngang.

- Xác định tài trong cho phép gây xói mòn đối với thanh.

Theo kết quả tính toán của lý thuyết đơn, quy luật phân bổ ứng suất ở trên mặt cắt ngang của thanh mặt cắt hình chữ nhật nằm trong hình 3.

Ứng suất tối lớn nhất \(\tau_{\text{max}} \) xuất hiện tại điểm giao cắt chính:

\[\tau_{\text{max}} = \frac{M_{\text{max}}}{W_m} . \] \hspace{1cm} (9)

Ứng điểm giao cắt chính ngang:

\[r = r_{\text{max}} \] \hspace{1cm} (10)

Góc xoay tương ứng giữa hai mặt cắt ngang cách nhau khoảng:

\[\phi = \frac{M_{\text{max}}}{GJ_{\text{max}}} \] \hspace{1cm} (11)
Hình 3

Theo công thức (9), (11)

\[W_{\text{max}} = abc \cdot h; \quad J_{\text{max}} = \beta \cdot b^2 \cdot h \] \hspace{1cm} (12)

Với \(\alpha, \beta, \gamma \) là các bảng số phụ thuộc vào các tỷ số \(h/b, \) cho biết đường dạng baz trong bảng.

Là xo xắn ở hình trục bôc ngắn là chi tiết được dùng nhiều trong kỹ thuật, khi làm việc sẽ chịu xoắn và cắt, nhưng chiều xoắn lại chính.

- Cung suất tiếp lớn nhất trên mặt cắt đi qua trục:

\[\tau_{\text{max}} = \frac{8 \cdot PD}{\pi d^2} \left(1 + \frac{d}{2D} \right) \] \hspace{1cm} (13)

Trong đó:

- Đ - Đường kính trung bình của vòng dài lõ xo;
- D - Đường kính dây lõ xo;
- P - Lực kéo hoặc nén độc trực.

b. Khi bất quá lực cắt và xết tới ảnh hưởng riêng của vòng dây lõ xo:

\[\tau_{\text{max}} = k \cdot \frac{PD}{\pi d^2} \] \hspace{1cm} (14)
Với: \[k = \frac{d + 0.25}{D - 1} \]

Đồ giãn hoặc cơ của lò xo:

\[\lambda = \frac{8PD' n}{Gd^4} = \frac{P}{C} \]

(15)

Trong đó C: Đồ cung của lò xo (lực cần thiết để giãn hoặc cơ lò xo một đơn vị dài),

\[C = \frac{P}{\lambda} = \frac{Gd^4}{8D^2 n} \]

(16)

Với: n là số vòng dây của lò xo.

Bài toán siêu hình về xoắn là những bài toán mà chỉ với các phương trình cần bằng tính học thì không thể xác định được các phân lực liên kết và nơi lực. Để giải, cần thiết lập các phương trình biến dạng bổ sung trên cơ sở không tách các thân của hệ, đó chính là quan hệ hình học giữa chuyển vị của chúng.
Chương V: ỨNG PHẢNG THANH THẲNG

Thành thang được gọi là chịu Ứng phẳng khi thành có mặt cắt đôi xứng và tai trong cùng tác dụng trong mặt phẳng đôi xứng, tức thành bị Ứơn cong sẽ là đường cong nằm trong mặt phẳng này. Thành chịu Ứơn gọi là đếm.

Nếu trên mặt cắt ngang của thành chỉ có mặt thành phần mở men Ứơn ta nói thành chịu Ứơn thuận tự. Nếu ngoài mở men Ứơn còn có lực cắt tại nội thành chịu Ứơn ngang phẳng.

Trong hợp chịu Ứơn phẳng thuận tự (hình 1) đường trung hoa trùng với trục quan tính trung tâm x của mặt cắt, ứng suất phẳng tại điểm bất kỳ trên mặt cắt ngang cách đường trung hoa không y được tính theo công thức:

$$\sigma_x = \frac{M_{xy}}{I_y}$$ \hspace{1cm} (1)

Trong đó:

- M_{xy} - mở men Ứơn tại mặt cắt khác sáy,
- I_y - mở men quan tính của mặt cắt đối với trục quan tính chính trung tâm x (cùng là đường trung hoa).

[Hình 1]

Trên mặt cắt ngang, ứng suất phẳng kéo lớn nhất σ_{max} và nén lớn nhất σ_{min} tại những điểm xa đường trung hoa nhất và bằng:

$$\sigma_{max} = \frac{M_y}{W_y}; \quad \sigma_{min} = \frac{M_y}{W_y}$$ \hspace{1cm} (2)

$$W_y = \frac{L}{y_s}; \quad W_y = \frac{L}{y_s}$$ \hspace{1cm} (3)

Trong đó:
\(W_x, W_y \) - các mô men chòng uốn của mặt cắt ngang đối với trục trung hoa;
\(y_i, y_k \) - khoảng cách từ điểm chịu kéo xa nhất và nẹn xa nhất của mặt cắt đến đường trung hoa.

Trường hợp thanh chịu uốn ngang phẳng (hình 2), ứng suất pha ở một điểm bất kỳ trên mặt cắt ngang cách đường trung hoa khoảng \(y \) được tính theo công thức (1) như trường hợp uốn phẳng thuận tuy, còn ứng suất tiếp tại điểm trên mặt cắt ngang cách đường trung hoa khoảng \(y \) được tính theo công thức:

\[
\tau = \frac{Q S_x}{J_y b^y}
\]

(4)

Trong đó:
\(Q \) - lực cắt trên mặt cắt ngang khảo sát;
\(J_y \) - mô men quẩn tính của mặt cắt ngang đối với đường trung hoa;
\(S_x \) - mô men - bình của phần mặt cắt từ mặt ngang với điểm tính ứng suất tiếp tới mép ngoài của mặt cắt đối với đường trung hoa;
\(b^y \) - bề rộng của mặt cắt tại điểm tính ứng suất.

Hình 2

Ứng suất tiếp có trị số lớn nhất tại các điểm nằm trên đường trung hoa của mặt cắt ngang:

\[
\tau_{\text{max}} = \frac{3 O x}{2 F} \text{ đối với mặt cắt chữ nhật;}
\]
\[
\tau_{\text{max}} = \frac{4 O x}{3 F} \text{ đối với mặt cắt hình tròn;}
\]

Trong đó \(F \) là diện tích mặt cắt.
Diệu kiện bến của thanh chịu uốn phẳng thuận duy trì là ứng suất phẳng lớn nhất trong thanh không vượt quá ứng suất chịu phép.

+ Đối với thanh làm bằng vật liệu đàn,

\[\sigma_{\text{max}} \leq \sigma_{\text{a}} ; \quad |\varepsilon| \leq |\varepsilon| \]

(5)

+ Đối với thanh làm bằng vật liệu đéo:

\[\text{max} \sigma = \text{max}(\sigma_{\text{a}}, |\varepsilon|) \leq \sigma_{\text{a}} \]

(6)

Trong trường hợp thanh chịu uốn nhang phẳng, trên đảm có ba loại điểm có khả năng gây hiện, cần tendon khám kỹ thuật cơ chế ba loại điểm này. Đối với ba loại đảm được quyết định theo loại đảm gây hiện nhất trong ba loại điểm đó.

- Điểm gây hiện trong trang thái ứng suất đơn nằm ở mép ngoài của đảm cách xa nhất đối với lớp trung hoa, điều kiện bến cho điểm này giống như trường hợp uốn phẳng thuận duy trì.

- Điểm gây hiện ở trang thái tự do thì uốn nhang hoài, điều kiện bến có thể viết dưới dạng:

\[\varepsilon_{\text{max}} \leq \varepsilon_{\text{a}} \]

(7)

- Điểm gây hiện trong trang thái ứng suất phẳng có trị số ứng suất phẳng \(\sigma \) và ứng suất \(r \) cùng tương đối lớn là điểm mà ở do met cát ngang có su thay đổi để rừng đốt ngừng. Điều kiện bến được thiết lập theo các lý thuyết bên.

+ Theo thuyết bền ứng suất đối lớn nhất (thuyết bến 3):

\[\sigma_{\text{a}} = \sqrt{\sigma^{2} + 4\varepsilon^{2}} \leq \sigma_{\text{a}} \]

(8)

+ Theo thuyết bền thể nằm biên đối lớn nhất (thuyết bến 4):

\[\sigma_{\text{a}} = \sqrt{\sigma^{2} + 3\varepsilon^{2}} \leq \sigma_{\text{a}} \]

(9)

+ Theo thuyết Mohr:

\[\sigma_{\text{a}} = \frac{1-\alpha}{2} \sigma + \frac{1+\alpha}{2} \sqrt{\sigma^{2} + 4\varepsilon^{2}} \leq \sigma_{\text{a}} \]

(10)

với: \(\alpha = \frac{\sigma_{\text{a}}}{\sigma} \).

Trong quá trình đảm làm việc, ngoài việc đảm bảo độ bền và phạm phải đảm bảo được. Đỗ cẳng của đảm đặc trung bằng độ vững và góc xoay, được xác định bằng phương trình vi phân toàn dụng đúng đẳng thức của các đúc toàn:

27
\[y(x) = \frac{-M_x(x)}{EJ_x} \quad (11) \]

Đo vồng và góc xoay được xác định theo phương pháp sau:

- Phương pháp tích phân không xác định: Tích phân trực tiếp phương trình (11) theo tọa độ z theo trực dương.

\[\phi(x) = y(x) = \int \frac{M_z(x)}{EJ_z} \, dx + C \]

Tích phân liên tục nhất theo z được gọi là:

\[y(x) = \left[\int \frac{M_z(x)}{EJ_z} \, dx \right] Cz + D \]

Các hệ số tích phân C, D được xác định từ các điều kiện biên tại mặt cắt đứt liên kết và điều kiện liên tục các độ vồng và góc xoay tại vị trí hợp giữa các đoạn đứt.

- Phương pháp thông số ban đầu:

Đối với đứt nhiều đoạn, trên mỗi đứt có độ cứng chung uốn EJ không đổi, ta có:

\[y_{xx}(x) = y_x + \Delta y_z(z-a) - \frac{1}{EJ} \{ [K_m M_{xx}(a)] - K_{m1} M_z(a) \} \left(\frac{x-a}{2l} \right)^3 + \]

\[+ \{ [K_m M_{xx}(a) - K_{m1} M_z(a)] \left(\frac{z-a}{2l} \right)^3 + [K_m M_{xx}''(a) - K_{m1} M_z''(a)] \left(\frac{z-a}{2l} \right)^5 \} \quad (21) \]

Trong đó:

\[K_{m1} = \frac{EJ}{k_m} \quad K_m = \frac{EJ}{k_m} \]

Với EJ là độ cứng quỷ uốn.

Độ vồng đứt trên đứt thứ nhất:

\[y_1(x) = y_a + y_b x - \frac{1}{EJ} \left[K_m M_a x^2 \left(\frac{a-x}{2l} \right)^3 + K_{m1} M_a \left(\frac{a-x}{2l} \right)^3 + K_m M_b \left(\frac{x-b}{2l} \right)^3 + K_{m1} M_b \left(\frac{x-b}{2l} \right)^5 \right] \]

Đối với đứt có độ cứng chung uốn EJ không đổi trên suốt chiều dài đứt:
Chương VI: THANH CHIỀU LỰC PHỨC TÁP

I. ÜON XIVEN

Thanh bị tác dụng vôn hai phân miền Mx, My tác dụng về hai mặt cắt ngang của thanh và hai phân Mi và Mj tác dụng trong mặt cắt ngang của toàn bộ công thức:

\[\sigma_x = \frac{M_x}{I_x} y + \frac{M_y}{I_y} x, \] \quad (1)

Hoặc theo công thức kỳ thuật:

\[\sigma_x = \pm \frac{|M_x|}{I_x} y \pm \frac{|M_y|}{I_y} x \] \quad (2)

Đầu công hoặc trái trước số hàng trong (2) tùy thuộc vào điểm tính ứng suất nằm trong miền chuối hoặc nằm do từng phân Mi, My gây ra trên mặt cắt ngang.

![Hình 1](image1)

![Hình 2](image2)

Phương trình đường trung hoà nhận được khi cho \(\sigma_x \), tính theo (1) bằng không.

\[y = -\frac{M_x}{M_y} \frac{1}{I_x} x = tg \alpha x, \] \quad (3)

Trong đó:

- \(\alpha \)- góc hợp giữa đường trung hoà và y
- \(\beta \)- góc hợp giữa đường trung hoà và x

So đó phân bố các ứng suất \(\sigma_x \) như trên hình 2.

Điều kiện bền ức xien đôi với thanh nằm bằng:

30
Vật liệu đơn: $\sigma_{um} < [\sigma], \sigma_{um} < [\sigma]_u$ (4)
Vật liệu đeo: $\mu = \max \{\sigma_{um}, [\sigma_{um}]_0\} < [\sigma]$ (5)

Các ứng suất σ_{xx}, σ_{yy} được tính theo công thức (1), với các toa độ là toa độ của điểm nằm trên chu vi mặt cắt ở khoảng cách xa nhất đối với trực trung hoà trong miền chịu kéo và chịu nén.

Đối cả thân thô có mặt cắt ngang là hình chữ nhật hoặc những hình mà các trực quan tính chất đúng tam x, y trong với các trực đối xứng với mặt cắt ngang thì các ứng suất σ_{xx}, σ_{yy} được tính theo công thức:

\[
\sigma_{xx} = \frac{M_x}{W_x}, \quad \sigma_{yy} = \frac{M_y}{W_y}
\]

(6)

2. UỐN CÔNG KÉO (NẾN) ĐÔNG THỜI

Thân chịu sơn công kéo (hoặc nén) đồng thời khi trên mỗi mặt cắt ngang của thân có các thành phần lực là mô men uốn M_x, M_y và lực đốc N_z (hình 3).

Ứng suất phập tại một điểm bất kỳ trên mặt cắt ngang có toa độ x, y tính theo công thức:

\[
\sigma_z = \frac{N_z}{F} + \frac{M_x}{J_x} y + \frac{M_y}{J_y} x,
\]

(7)

Hay: \[
\sigma_z = \frac{N_z}{F} + \frac{M_x}{J_x} y + \frac{M_y}{J_y} x
\]

(8)

Trong đó F là diện tích mặt cắt ngang của thân.

Việc chọn đầu trục mỗi số lượng trong công thức (8) tùy theo các thành phần nội lực tương ứng gây nên ứng suất kéo hay nén tại điểm cắt tính ứng suất. Một dạng riêng của công kéo (hoặc nén) đồng thời kéo nén lệch tâm (hình 4).

Hình 3 Hình 4
Kỹ hiệu \(x, y \) là toạ độ điểm đạt lực \(P \). Ước suát phân tạ điểm bắt kỳ có toạ độ \(x, y \) trên mặt cắt ngang tính theo công thức:

\[
\sigma = \frac{\sigma_0}{F} \left(\frac{x}{I_x} + \frac{y}{I_y} \right)
\]

(9)

Trong đó:
- \(F \): diện tích mặt cắt ngang của thành;
- \(I_x = \frac{J_x}{F} \), \(I_y = \frac{J_y}{F} \): bình phương bán kính quỹ đạo của mặt cắt ngang đi qua trục \(x \), truyền \(y \).

Phương trình đường tròn hoa trên uốn cong kéo đồng thời có dạng:

\[
\frac{N_x}{F} + \frac{M_x}{J_x} y + \frac{M_y}{J_y} x = 0
\]

(10)

Cơn trống kéo (nên) lệch tâm:

\[
\begin{align*}
\frac{x}{a} + \frac{y}{b} &= 1 \\
\end{align*}
\]

(11)

Với:

\[
\begin{align*}
a &= \frac{1}{I_x} ; & a &= \frac{1}{I_y} \\
\end{align*}
\]

(12)

Diều kiện bên trong uốn cong kéo đồng thời đổi với thanh bằng:
- Vật liệu đơn: \(\sigma_{\text{max}} \leq [\sigma]_u \) \(\sigma_{\text{min}} \leq [\sigma]_l \)

(13)

- Vật liệu đốc: \(\max \sigma = \max(\sigma_{\text{max}} + \sigma_{\text{min}}) \leq [\sigma] \)

(14)

Các ước suát nửa \(\sigma_{\text{max}}, \sigma_{\text{max}} \) xác định theo công thức (7) với các toạ độ \(x, y \) là toạ độ các điểm trên chuu vi mặt cắt ở khoảng cách xa nhất đổi với đường tròn hoa trong miền có ước suát kéo và miền có ước suát nén.

3. UỐN CÔNG XOÁN DÒNG TH francais

Thành chịu uốn động thể khi trên mọi mặt cắt ngang của nó có dòng thể các mô men uốn \(M_x, M_y \) và mô men xoắn \(M_r \).

Trường hợp thanh có mặt cắt ngang tròn, nếu trên mặt cắt tròn tại hai thành phần mô men uốn \(M_x, M_y \), thì ta hợp lại thành mô men uốn \(M_r \):

\[
M_r = \sqrt{M_x^2 + M_y^2}
\]

Tác dụng trong mặt phẳng xy.(hình 5)
Ứng suất phẳng lòm nhất \(\sigma_{\text{max}} \) và nhỏ nhất \(\sigma_{\text{min}} \) phát sinh tại các điểm xa đường tròn hóa u nhất \(\sigma_{\text{max}} = \sigma_{u} \quad \sigma_{\text{min}} = \sigma_{\text{p}} \) và có trị số:

\[
\sigma_{\text{max}} = \sigma_{u} = \frac{M_{x}}{W_{x}} = \frac{M_{x}^{2} + M_{y}^{2}}{W_{x}}
\]

(15)

Hình 5

Hình 6

Ứng suất tiếp lòm nhất do mỏ men xoa gây ra tại các điểm trên chu vi mặt cắt:

\[
\tau_{\text{max}} = \frac{M_{x}}{W_{p}}
\]

(16)

Khi xét ảnh hưởng động thời của mỏ men uốn \(M_{u} \) và mỏ men xoa \(M_{x} \), ta nhận thấy diện nguy hiểm trên mặt cắt ngang là các điểm A, B. Các điểm này ở trong trục thải ứng suất phẳng và điều kiện bền của chúng được thiết lập theo các thuyết bên.

+ Theo thuyết bên ứng suất tiếp lòm nhất (thuyết bên 3):

\[
\sigma_{\alpha} = \frac{1}{W_{e}} \left(M_{x}^{2} + M_{y}^{2} + M_{z}^{2} \right) \leq [\sigma]
\]

(17)

+ Theo thuyết bên thể năng biến dạng lòm nhất (thuyết bên 4):

\[
\sigma_{\alpha} = \frac{1}{W_{e}} \sqrt{M_{x}^{2} + M_{y}^{2} + \frac{3}{4} M_{z}^{2}} \leq [\sigma]
\]

(18)

+ Theo thuyết bên Mohr:

33
\[
\sigma_{\text{max}} = \frac{M_x}{W_x} + \frac{M_y}{W_y} \leq \sigma_{\text{t}} \quad (19)
\]

\[
\text{với: } \sigma_{\text{t}}, \sigma_{\text{y}}
\]

Trường hợp thân có mặt cắt ngang hình chữ nhật chịu lực công xói công xói dòng thời như trong hình 6. Diểm \(A\) chịu ứng suất kéo lớn nhất \(\sigma_{\text{max}}\), đếm \(C\) chịu ứng suất nén lớn nhất \(\sigma_{\text{min}}\), trục sở có cắt chân:\n
\[
\sigma_{\text{max}} = \frac{M_x}{W_x} + \frac{M_y}{W_y}
\]

\[
\sigma_{\text{min}} = \frac{M_x}{W_x} - \frac{M_y}{W_y}
\]

Ứng suất tiếp lớn nhất do mô men xoắn gây ra tại điểm giáp cạnh đại (diểm I) và ứng suất tiếp \(\tau\) do mô men xoắn gây ra tại điểm giáp cạnh ngắn (diểm K), có trị số:\n
\[
\tau_{\text{max}} = \frac{M_x}{W_x} = \frac{M_y}{W_y}
\]

\[
\tau_{\text{min}} = \frac{M_x}{W_x} = \frac{M_y}{W_y}
\]

Diểm nguy hiểm nhất sẽ là một trong ba điểm A, L, K. Việc chốt kinh nghiệm độ diễm nhỏ gây nguy hiểm nên phải kiểm tra bên với cả ba diễm:\n
+ Kiểm tra bên với phần tô tại A:\n
\[
\sigma_{\text{max}} = \frac{M_x}{W_x} + \frac{M_y}{W_y} \leq \sigma_{\text{t}} \quad (22)
\]

+ Kiểm tra bên với phần tô tại I và K:\n
- Theo thuyết bền ứng suất tiếp lớn nhất (thuyết bền 3):\n
\[
\sigma_{\text{max}} = \sqrt{\sigma_{(x)}^2 + 4\tau_{(x)}^2} \leq \sigma_{\text{t}} \quad (23)
\]

- Theo thuyết bền thiết năng bền đối hình tháp (thuyết bền 4):\n
\[
\sigma_{\text{max}} = \sqrt{\sigma_{(x)}^2 + 3\tau_{(x)}^2} \leq \sigma_{\text{t}} \quad (24)
\]

- Theo thuyết bền Mohr:\n
\[
\sigma_{\text{max}} = \frac{1 - \alpha}{2} \sigma_{(x)} + \frac{1 + \alpha}{2} \sqrt{\sigma_{(x)}^2 + 4\tau_{(x)}^2} \leq \sigma_{\text{t}} \quad (25)
\]

\[34\]
trong đó:

\[\alpha_1 = \frac{M_s}{W_p}, \quad \sigma_x = \frac{M_s}{W_s}, \quad \tau_\theta, \tau_\nu \text{ Tính theo (21)}; \]

\[\alpha = \frac{[\sigma]_b}{[\sigma]_c}. \]
Chương VII: ƠN ĐỊNH CỦA THANH CHI NÊN DỤNG TÂM

Lực tối han P_a là lực làm ch国际贸易 trang thái canh bằng ơn định sang trang thái mặt ơn định (từ thành sang công).

Khi nén độc trực thành lạng trực trong giới hạn dân hồi, trị số của lực tối han được xác định theo công thức Euler:

$$P_a = \frac{\pi^2 E J_m}{(\mu)^2}$$ \hspace{1cm} (1)

Trong đó:
- E - Môđăn dân hồi của vật liệu thành;
- J_m - Mô men quán tính nhỏ nhất của diện tích nguyên của mặt cắt ngang;
- μ - Chữ dải của thành;
- μ - Hệ số phụ thuộc vào liên kết ở hai đầu thành trong hai mặt phía quán tính chính trung tâm (hình 1)

![Diagram](image)

Hình 1

Trong trường hợp liên kết của thành trong hai mặt phía quán tính chính trung tâm khác nhau, công thức có dạng:

$$P_a = \pi^2 E \frac{J}{(\mu)^2}$$ \hspace{1cm} (2)

Ước suất tối hạn σ_a được tính theo công thức:

36
(3)

Trong đó:

E_{1g} - diện tích nguyên của mặt cắt ngang;

λ - độ mảnh của thân xác định theo công thức:

$$\lambda = \frac{\mu^2}{i_{mm}}$$

với: i_{mm} - bán kính quan tính nhỏ nhất của diện tích E_{1g} của mặt cắt ngang thân;

$$i_{mm} = \sqrt{\frac{j_{mm}}{E_{1g}}}$$

Trường hợp liên kết ở thân thành hai mặt phản quan tính chính trùng tâm khác nhau:

$$\lambda = \left(\frac{\mu^2}{i_{mm}}\right)$$

Điều kiện để áp dụng công thức Euler là:

$$\lambda > \frac{\pi}{E} \frac{E}{E_{1g}} = \lambda_0$$

Trong đó:

σ_0 - giới hạn lệ của vật liệu thân;

λ_0 - độ mảnh tối hạn, phụ thuộc vào vật liệu thân.

Khi vật liệu thành làm việc ngoài giới hạn dán hồi $\lambda < \lambda_0$;

Đối với thân có độ mảnh về $\lambda < \lambda_0$, ứng suất tối hạn được tính theo công thức thực nghiệm của lasinck:

$$\sigma_{mm} = a - b \lambda$$

trong đó:

a, b các hệ số phụ thuộc vào vật liệu.

Riêng đối với gang:

$$\sigma_{mm} = a - b \lambda + c \lambda^2$$

(7)
Đối với các thành có độ mảnh bé $\lambda < \lambda_1$ thành bị phá bằng do không đủ độ bền trước khi mài ổn định do đố

$$\sigma_a = \sigma_b$$ \hspace{1cm} (8)

Trong đó σ_a - ứng suất nguy hiểm, bằng giới hạn chạy σ_a với vị trí đó ở và bằng giới hạn bền σ_b với vị trí đó.

Khi tính thành chuẩn nên, ngoài điều kiện bền, cần phải đảm bảo điều kiện ổn định,

$$P \leq \frac{P_{ad}}{n_{ad}}$$ \hspace{1cm} (9)

Hay $$\sigma = \frac{P}{F_{ad}} \leq \frac{\sigma_{ad} - [\sigma]_{ad}}{n_{ad}}$$ \hspace{1cm} (10)

n_{ad} - hệ số an toàn về ổn định

$[P]_{ad}$, $[\sigma]_{ad}$ - tải trọng cho phép và ứng suất cho phép tính theo điều kiện ổn định.

Ngoài phương án tính ổn định khi chịu lực sẽ an toàn về ổn định $[\sigma]_{ad}$ còn có phương án thứ hai để tính ổn định - phương pháp cơ bản để tính toán ổn định các thành (tính ổn định theo quy phạm):

$$\sigma = \frac{P}{F_{ad}} \leq \sigma_c$$ \hspace{1cm} (11)

Trong đó:

- σ_c - hệ số giảm ứng suất cho phép, giảm thuộc vào độ mảnh λ và vị trí

($\varphi < 1$), dược cho dưới dạng bằng $\varphi(\lambda)$;

$[\sigma]_{ad}$ - ứng suất cho phép theo điều kiện bền.

Xuất phát từ các điều kiện (10), (11) có ba dạng bài toán cơ bản:

- Kiểm tra ổn định.
- Xác định lực nên cho phép.
- Chọn kích thước mặt cắt ngang của thành.
Chương VII: TÌNH CHUYỂN VI BÀNG PHƯƠNG PHÁP NẠNG LIỆU

Kỹ hiệu Δ_{ss} là chuyển vi theo phương k bắt kỹ cho trực tại một điểm cho trước của hệ, ta có công thức Mohr để xác định Δ_{ss}:

+ Đối với bát toán không gian:

$$
\Delta_{\text{ss}} = \sum_{p=0}^{n} \frac{\mathbf{N}_{p} \mathbf{N}_{p}^T}{E_{p} J_{p}} dx + \sum_{p=0}^{n} \frac{\mathbf{M}_{p} \mathbf{M}_{p}^T}{E_{p} J_{p}} dz + \sum_{p=0}^{n} \frac{\mathbf{M}_{p} \mathbf{M}_{p}^T}{G_{p} J_{p}} dz + \sum_{p=0}^{n} \frac{\mathbf{Q}_{p} \mathbf{Q}_{p}^T}{G_{p} J_{p}} dz
+ \sum_{p=0}^{n} \frac{\mathbf{Q}_{p} \mathbf{Q}_{p}^T}{G_{p} J_{p}} dz
$$

(1)

Trong đó:

$\mathbf{N}_{p}, \mathbf{M}_{p}, \mathbf{Q}_{p}$ - Các thành phần nội lực được nội lực đơn vị đặt tại điểm căn tính chuyển vi theo phương căn tính chuyển vi gây nén trên đoạn thứ j;

$\mathbf{N}_{p}^T, \mathbf{M}_{p}^T, \mathbf{Q}_{p}^T$ - Các thành phần nội lực do tải trọng tác dụng lên hệ gây nén trên đoạn thứ j

E_{p}, G_{p} - Mô đơn dẫn hồi và dẫn hồi trực của vật liệu trên đoạn thứ j;

J_{p} - Diện tích của mặt cắt ngang tại vị trí xác định nội lực thuộc đoạn thứ j;

J_{p}^{*} , J_{p}^{**} - Mô men quan tính trung tâm của diện tích J_{p};

+ Đối với hai toán phương:

$$
\Delta_{\text{ss}} = \sum_{p=0}^{n} \frac{\mathbf{N}_{p} \mathbf{N}_{p}^T}{E_{p} J_{p}} dx + \sum_{p=0}^{n} \frac{\mathbf{M}_{p} \mathbf{M}_{p}^T}{E_{p} J_{p}} dz + \sum_{p=0}^{n} \frac{\mathbf{Q}_{p} \mathbf{Q}_{p}^T}{G_{p} J_{p}} dz
$$

(2)

Trong đó:

$\mathbf{N}_{p}, \mathbf{M}_{p}, \mathbf{Q}_{p}$ - Các thành phần lực doc, mở men ụơn và lực cắt do lực đơn vị đặt tại điểm và theo phương căn tính chuyển vi gây nén trên đoạn thứ j;
\[N_i, M_{ij}, Q_{ij} \cdot \text{ Các thằng phần lực dòng, mô men uốn và lực cất do tài trọng gây nên trên đoạn thẳng thì j.}\]

Thương thương anh hưởng của lực cất đến biến dạng của hệ là hệ nên có thể bò qua.

Trong hợp hệ thanh thì dàn chịu các lực đặt ở các mặt, trong các thằng chỉ có thằng phần lực dòng \(N_i \), công thức Mohr có dạng:

\[
\Delta_{el} = \sum \frac{N_i N_{i,j}}{E J_i} dz = \sum \frac{N_i N_{i,j}}{E J_i} l_j \tag{3}
\]

+ Đối với hệ chỉ có đoạn thành chịu xoắn:

\[
\Delta_{el} = \sum \frac{M_i M_{i,j}}{G J_i} dz = \sum \frac{M_i M_{i,j}}{G J_i} l_j \tag{4}
\]

Các công thức Mohr (1) và (2) được dùng để xác định cã chuyển vĩ dài lon chuyển vĩ gốc. Khi cần tính chuyển vĩ gốc ta chỉ cần thay lực dòng vĩ \(P_k \) = 0 bởi mô men dòng vĩ \(M_k = 1 \).

Xác định công thức chuyển vĩ Mohr được tiến hành theo trình tự sau:

- Xem trạng thái chịu lực đã cho của hệ là trạng thái "m". Viết các biểu thức biểu thị nội lực của hệ ở trạng thái đó.

- Tạo trạng thái "k" bằng giải phóng hệ khối tác động của tài trọng, sau đó tái diễn và theo phương cần tinh chuyển vĩ đạt lực dòng vĩ. Viết các biểu thức biểu thị nội lực của hệ ở trạng thái này.

- Thay các biểu thức biểu thị nội lực của hệ ở trạng thái "m" và trạng thái "k" vào các công thức (1), (2), hoặc các công thức (3), (4), tính các tích phân của tổng lực trên từng đoạn thanh, rồi cộng kết quả, ta được chuyển vĩ cần tìm. Nếu kết quả mang dấu dương, thì chuyển vĩ cùng chiều với lực dòng vĩ. Nếu kết quả mang dấu âm, thì chuyển vĩ ngược chiều với lực dòng vĩ.

Trong trường hợp một trong hai biểu độ nội lực ở trạng thái "m" và trạng thái "k" đük đường các tích phân (1), (2) là dường, thằng ta có thể thay phép tích phân theo công thức Morh bằng phương pháp níu biểu độ Verasagin.
Mô tí lô thọ cho lô thọ từ nhau, nêu chì với các phương trình cản bằng tính học thì cah có thể xác định được dán giữa các phần líc và nói líc trong hệ.

Bạc siu tinh cua môt hệ bằng hiệu giữa số ans số cần phải xác định và số phương trình cân bằng tính học có thể thiệt lập được dón với hệ hay bằng số các liên kết than của hệ.

Bạc siu tinh S cua môt hệ đéc xác định theo các công thức sau:

\[S =
\begin{array}{c}
\text{ln} + \text{ln} - 3k,
\end{array}
\]

Trong đó:
- \(\text{ln} \) - Số liên kết ngoài;
- \(\text{ln} \) - Số liên kết nội;
- \(k \) - Số thanh trong hệ.

Học:

\[S = 3C - 1 \]

Với \(C \) - Số chu tuyen kế khác nhau, trong đó toàn lan không có khóp;
- \(S \) - Số liên kế quay dón ra liên kết khóp.

Để giải bài siu tinh ta lập dùng phương pháp líc.

Trình tự giải bài toán theo phương pháp líc như sau:

- Xác định bậc siu tinh \((S) \) của hệ.

- Thiệt lập hệ cah băn bằng cách bô đ courageous các liên kết trong hệ đà cho. Từ một hệ siu tinh có thể có nhiều hệ cơ bản. Chọn hệ cơ bản hợp lý sẽ rút ngắn quá trình tính toán.

- Tai vị trò và theo phương cah liên kết bô đ courageous hệ cơ băn, ta đạt các phương líc liên kết tương ứng \(X_1, X_2, ..., X_s \). Các phần líc liên kết này giả vai trò các ảnh số líc của bài toán. Với vị trò phương pháp này đéc được gọi là phương pháp líc.

- Xác định các phương líc liên kết \(X_1, X_2, ..., X_s \) và điều kiện sao cho đủi tác dụng của tài trọng và các phương líc liên kết thì biến dạng và chuyển vị của hệ cơ băn hoàn toàn giống như hệ siu tinh. Điều kiện này đéc được thể hiện đủi dạng một hệ phương trình chỉnh tắc:

\[\delta_1X_1 + \delta_2X_2 + ... + \delta_nX_n + \Delta_{np} = 0 \]

T3

41
\[\delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_N x_N + \delta_0 x_0 + \Delta_{\text{ref}} = 0 \]
(3)

\[\delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_N x_N + \delta_0 x_0 + \Delta_{\text{ref}} = 0 \]

Trong đó:
- \(\delta_a \) (\(i = 1, 2, \ldots, n \)) Chuyên vị theo phương i của hệ cơ bản do tài trọng gây nên;
- \(\delta_k \) (\(i, k = 1, 2, \ldots, n \)) Chuyên vị do phân lập của hệ cơ bản do lực đơn vị đặt phương k gây nên.

- Các đại lượng này được xác định theo công thức Morh:
 \[\Delta_\phi = \Delta_\phi^1 + \Delta_\phi^2 + \Delta_\phi^3 + \Delta_\phi^4 \]
 (4)

- \(\delta_a \) = \(\delta_a \)
 \[\delta_a = \sum_{i=1}^{n} N_a e_i d_i + \sum_{i=1}^{n} M_a e_i d_i + \sum_{i=1}^{n} G_f e_i d_i \]
 (5)

- Các phán tích của các đại lượng (các phân lực liên kết tham) \(X_1, X_2, \ldots, X_n \). Dưới các phân lực liên kết này nên hệ cơ bản đã chọn, ta được một hệ tĩnh ổn định.

- Đôi với các phân tích khác nhau của hệ cơ bản, ứng suất, chuyên vị ..., được tiến hành trên hệ tĩnh ổn định.

- Đối với đoạn liên tục - đoạn được đặt trên số gõ từ nhiều hơn hai (trong đó có một gõ cõi tính) và không có các khớp trung gian (hình 1a). Bắc siua tính s của dạng liên tục bằng số các liên kết đầu tư (số gõ tựa trung gian) hay bằng số nhịp trù dì một.

- Hệ cơ bản của đoạn liên tục được chọn bằng cách đặt tham các khớp bên le tại mặt cắt ngang ở trên các gõ tựa trung gian (hình 1b).

\[\text{đề} \]
Các mô men khớp M_1, M_2, \ldots, M_n được xác định từ hệ phương trình ba mô men:

1. **Khí do cung chong uốn** EJ của đơn là hàng số trên từng nhịp

 \[
 \frac{1}{EJ}M_{m-1} + \left(\frac{l_e}{EJ} + \frac{l_{ext}}{EJ_{ext}} \right) M_m + \frac{l_m}{EJ_{ext}}M_{m+1} = \frac{\Omega_{m} - \Omega_{m+1}}{EJ_{ext}l_m EJ_{ext}l_{m+1}}
 \]

 với $m = 1, 2, 3, \ldots, n$.

2. **Trong độ**:

 \[
 \Omega_{m}, \Omega_{m+1} - \text{giây nên trên nhịp thứ } m \text{ và thứ } n+1
 \]

 EJ_{ext} - Chídau và độ cung chong uốn của nhịp thứ n và thứ $n+1$.

 X_n - Điểm bắt đầu của các di chuyen độ m cùng đến với nhịp số thứ $n+1$ (hình 1c).

 a_n, b_{m+1} - khoan crix từ trung tâm của các di chuyen độ để gơi trum (n-1) và (n+1) (hình 1c).

3. **Khí do cung EJ không đổi trên toàn thân**, hệ phương trình (6) có dạng:

 \[
 \frac{1}{EJ}M_{m-1} + \left(\frac{l_e}{EJ} + \frac{l_{ext}}{EJ_{ext}} \right) M_m + \frac{l_m}{EJ_{ext}}M_{m+1} = \frac{\Omega_{m} - \Omega_{m+1}}{EJ_{ext}l_m EJ_{ext}l_{m+1}}
 \]
\[1, M_{\text{in}} + 2(1 + l_{\text{in}}) M_{a} + l_{\text{in}} M_{\text{out}} = -\left(\Omega_{\text{out}} \frac{b_{\text{in}}}{l_{\text{in}}} + \Omega_{\text{a}} \frac{b_{\text{in}}}{l_{\text{in}}}\right) \]

Với \(n = 1, 2, 3, \ldots, s \)

Đặt giả trị tìm được cần xác minh với hệ số \(M_{a}, M_{b}, \ldots, M_{s} \), nên ta có thể tìm nghiệm tương đương với đổi liên tục để đúng.

Trong trường hợp dây liên tục có đầu ổn định (hình 2a), ta tương tự như đã tìm và thu gọn tất cả trong đầu ra với độ và góc tua càng càng, Nếu đầu ổn định ở phía bên phải dây hoặc về góc tua đầu tiên, nếu đầu ổn định ở phía bên trái dây. Mẹ hoặc thu gọn cơ thể xem là mô men góc và góc tua tương đương (cô từ số đầu chỉ làm càng thể đạt và làm khi làm càng thể trên), hoặc được xem là mô men góc ổn định (hình 2b).

Trường hợp dây liên tục có đầu ngán (hình 3a), ta tương tự như ngán bằng một nháp đạt trên một góc tua cố định và một liên kết độ (hình 3b). Dây càng của đoạn nháp này được xem là lôn với cùng và chiều dài nháp được xem là bằng không.

![Hình 2](image1)

![Hình 3](image2)
Tài trọng động là tài trọng tạc đúng lên hệ đằng khó sát có gây ra lực quá tính đối với hệ do và được đặc trưng bởi sự đối lập của giá tốc trọng các bộ phận của hệ.

Bài toán về tài trọng động có thể chiia thành hai loại:

Các bài toán về dao động

1. Dao động dân hồi của hệ một bậc tự do
 + Trường hợp không có lực cần
 Phương trình vi phân chuyển động của hệ có dạng:
 \[y'' + \omega^2 y = 0 \]
 (1)
 (Nghĩm tổng quát của phương trình này là: \[y = A \sin (\omega t + \phi) \]
 (2)
 Trong đó:
 A, \(\phi \) - Các hàng số tích phựt được xác định từ điều kiện đầu
 \(\omega \) - tần số góc riêng được xác định theo một trong các công thức sau:
 \[\omega = \sqrt{\frac{C}{m}} = \sqrt{\frac{E}{m}} = \frac{1}{\sqrt{\delta m}} \]
 (3)
 với:
 C - Độ cứng của hệ
 \(m = \frac{Q}{g} \) - Khei lượng của vật dao động;

45
\[\Delta t = \frac{Q}{C} \] - chuyển vị tính tại mặt cắt cơ bất khối lượng \(m \) gây ra độ lệch cơ thời gian

trong lượng \(Q \) đạt tại mặt cắt độ thuộc phẳng đào dòng.

\[\Delta t = \frac{Q}{C} \] - chuyển vị tính tại mặt cắt cơ bất khối lượng \(m \) gây ra độ lệch cơ thời gian

độ và thuộc phẳng đào dòng.

Đo của \(C \) cần hè được tính theo công thức:

\[C = \frac{Q}{\Delta t} \]

Hình 1

Do với hệ dẫn hồi gồm \(n \) bộ phận dẫn hồi có độ cực \(C_i \) ghép song song (hình 1a)

\[C = \sum_{i=1}^{n} C_i \] (4)

Do với hệ dẫn hồi gồm \(m \) bộ phận có độ cực \(C_i \) ghép nối tiếp (hình 1b)

\[C = \sum_{i=1}^{m} \frac{1}{C_i} \] (5)

Do với hệ dẫn hồi gồm \(n \) bộ phận dẫn hồi có độ cực \(C_i \) ghép song song và \(m \) bộ phần dẫn hồi có độ cực \(C_i \) ghép nối tiếp – hệ hở hợp (hình 1c).

\[C = \sum_{i=1}^{n} \frac{1}{C_i} + \sum_{i=1}^{m} \frac{1}{C_i} \] (6)

+ Trưởng hợp cơ lực cần (lúc cân tự lực với 1 độ chuyển dòng).

Phương trình vi phân chuyển dòng của hệ

\[Y'' + 2ay' + \omega^2 y = 0 \] (7)
Nhiệm tổng quát của phương trình:
\[y = A e^{\alpha t} \sin(\omega t + \varphi) \]

(8)

Trong đó:
\[\omega = \sqrt{\omega_0^2 - \alpha^2} \], với \(\alpha << \omega_0 \);
\[A, \omega_0, \varphi \] - các hằng số tích phân được xác định từ điều kiện đầu.

2. Đạo động cuối cùng của hệ dẫn hỏi một hệ túc độ đột ngột của lực kích thích biến đổi tuần hoàn theo thời gian \(P(t) = P_0 \sin Bt \).

+ Trình hợp không lực cân

Phương trình vi phân chuyển động của hệ:
\[y' + \omega_0^2 y = \frac{P_0}{m} \sin Bt \]

(9)

Nhiệm tổng quát của phương trình này có dạng:
\[y = A \sin(\omega t + \varphi) + A_s \sin(\theta t + \varphi) \]

(10)

Trong đó \(A_s = k_s \Delta t \);
\[k_s = \frac{1}{1 - \omega^2} \]

(11)

+ Trình hợp có lực cân

Phương trình vi phân chuyển động của hệ:
\[y'' + 2\omega_0 y' + \omega_0^2 y = \frac{P_0}{m} \sin Bt \]

(12)

Nhiệm tổng quát của phương trình này có dạng:
\[y = A e^{\alpha t} \sin(\omega t + \varphi) + A_s \sin(\theta t + \varphi) \]

(13)

Trong đó:
\[A_s = k_s \Delta t \] - biến độ dao động có tác dụng của lực kích thích;
\[k_s = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_0^2} e^{2\alpha \Delta t}\right)^2 + \frac{4\alpha^2 \omega^4}{\omega_0^4}}} \]

(14)

\(\Delta t \) - chuyển vị tĩnh tại ma cất có khối lượng m gây ra độ giật trực cực đại của lực kích thích đạt tính len hệ theo phương đạo động;
\[k_s \] - hệ số động.
Đe tính giá trị lớn nhất của nồi lục, ứng suất, biên dạng và chuyển vít của hệ khi dao động, ta tính áp lực, ứng suất, biên dạng và chuyển vít của hệ gây nên bởi giá trị lớn nhất của lực kích thích đạt tính lên hệ rơi nhanh chuyển về hệ k_e.

3. Về chậm của hệ dẫn hồi một bậc vu do

+ Trong và chậm thường dùng (hình 2a) hệ số k_e dụng tính theo công thức:

$$ k_e = 1 + \frac{2b}{\Delta (1 + \frac{Q}{P})} $$

(15)

Trong đó:

P - Trong lượng vất và chậm;

Q - Trong lượng vất bi và chậm (trong lượng của khối lượng tập trung đạt lên hệ tại vị trí và chậm)

Δ - Chuyển vít tĩnh tại vị trí và chậm, theo phương và chậm, do trọng lượng và chậm đạt tính lên hệ gây nên.

+ Trong và chậm ngang (hình 2b), hệ số dòng được tính theo công thức:

$$ k_e = \sqrt{\frac{v_0}{g\Delta (1 + \frac{Q}{P})}} $$

(16)

Trong đó:

v_0 - vận tốc của vất và chậm;

Q - Trong lượng của khối lượng tập trung đạt lên hệ tại vị trí và chậm;

Δ - chuyển vít tĩnh tại vị trí và chậm theo phương và chậm do một lực có trị số không đổi bằng trọng lượng vất và chậm đạt tính lên hệ theo phương và chậm gây nên.
Hình 2
PHÂN II
CÁC BÀI TẬP LỚN
HƯỚNG DẪN CHUNG

1. Môi sinh viên nhận đề bài trong các bảng số liệu chủ trước, theo văn chủ cài trong tên mình, chỉ từ từ bài sang phía.

Ví dụ: Tên là Châu: chủ cài thứ nhất là "C", chủ cài thứ hai là "U", chủ cài thứ ba là "O", chủ cài thứ tư là "N". Người nào có tên không đủ số chữ cái ở trên, thì các số liệu chủ lại sẽ lấy chúng ngang với chữ cái cuối cùng trong tên của mình, ngược lại người nào có tên quá bốn chữ cái, thì lấy bốn chữ cái đầu tiên.

Nếu trong lớp có nhiều người trùng tên, để tránh trùng đề bài thì lấy kẽm theo họ hoặc tên dân theo giá vị chỉ định cụ thể cho từng người.

Chế bài đầu bài, các số liệu trước phân loại giải của mỗi bài tập.

2. Bài làm trên khổ giấy A4.

3. Trang bài trình bày theo mẫu (xem trang sau).

HỌC VIENT KỸ RỤA T QUẢN SỰ
Bộ môn Cố học vật lý

BÀI TẬP LỚN
SỨC BỀN VẤT LIỆU

Bài số:

Tên bài:

Họ và tên sinh viên:
Lớp:
Giáo viên hướng dẫn:

HÀ NỘI 20...
Tận bại: Về biểu đồ nối lực

Mô sinh viên làm 5 bài theo 5 loại sở dĩ.

Yêu cầu nội dung:

1. Về lại sơ đồ theo kích thước để cho dữ bài. Xác định phần lực liên kết cần thiết.
2. Dùng phương pháp mặt cắt, xác định quy luật tiến triển của các thành phần nối lực:
 - Lực doc
 - Lực cắt
 - Mô men uốn.
3. Về biểu đồ nối lực.
 Với kết câu khung: Kiểm tra sự cân bằng các góc.
 Với kết câu dẫn: Kiểm tra cân bằng của các nút.
5. Sơ liệu cho trước lạy theo bảng số 1, chép lại đầu bài và sơ lược để cho trước khi làm tổng sơ đồ.

Hư hụt về tình bấy trên nửa phần bên trái của trang giấy, thuyết minh bởi giải trình bấy trên nửa phần phải của trang giấy. Sở đồ của thành và bằng nét đậm (nét cơ bản), qui định trong vì chỉ thực cơ khí. Tài trọng, đường kích thước, đường đông kích thước, biểu đồ, nét gạch biểu đồ về bằng nét linestyle. Tên mỗi biểu đồ được ghi chú đậm đà trong vòng tròn.
<table>
<thead>
<tr>
<th>Chữ Cái</th>
<th>Chữ cái thứ nhất</th>
<th>Chữ cái thứ hai</th>
<th>Chữ cái thứ ba</th>
<th>Chữ cái thứ tư</th>
<th>Chữ cái thứ năm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>10</td>
<td>29</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Æ</td>
<td>2</td>
<td>11</td>
<td>28</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>Ä</td>
<td>3</td>
<td>12</td>
<td>27</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>13</td>
<td>26</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>14</td>
<td>25</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>15</td>
<td>24</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>16</td>
<td>23</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>17</td>
<td>22</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>G</td>
<td>9</td>
<td>18</td>
<td>21</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>H</td>
<td>10</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>I</td>
<td>11</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>J</td>
<td>12</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>K</td>
<td>13</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>L</td>
<td>14</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>M</td>
<td>15</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>N</td>
<td>16</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>O</td>
<td>17</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td>Õ</td>
<td>18</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loại số độ</th>
<th>L (m)</th>
<th>γ</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Æ</td>
<td>5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Ä</td>
<td>6</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>0.7</td>
<td>0.4</td>
<td>0.25</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>0.8</td>
<td>0.4</td>
<td>0.25</td>
</tr>
<tr>
<td>D</td>
<td>9</td>
<td>0.9</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>1</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>1.1</td>
<td>0.6</td>
<td>0.25</td>
</tr>
<tr>
<td>G</td>
<td>12</td>
<td>1.2</td>
<td>0.7</td>
<td>0.25</td>
</tr>
<tr>
<td>H</td>
<td>13</td>
<td>1.3</td>
<td>0.8</td>
<td>0.25</td>
</tr>
<tr>
<td>I</td>
<td>14</td>
<td>1.4</td>
<td>0.9</td>
<td>0.25</td>
</tr>
<tr>
<td>J</td>
<td>15</td>
<td>1.5</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>K</td>
<td>16</td>
<td>1.6</td>
<td>1.1</td>
<td>0.25</td>
</tr>
<tr>
<td>L</td>
<td>17</td>
<td>1.7</td>
<td>1.2</td>
<td>0.25</td>
</tr>
<tr>
<td>M</td>
<td>18</td>
<td>1.8</td>
<td>1.3</td>
<td>0.25</td>
</tr>
<tr>
<td>N</td>
<td>19</td>
<td>1.9</td>
<td>1.4</td>
<td>0.25</td>
</tr>
<tr>
<td>O</td>
<td>20</td>
<td>2</td>
<td>1.5</td>
<td>0.25</td>
</tr>
<tr>
<td>Õ</td>
<td>21</td>
<td>2.1</td>
<td>1.6</td>
<td>0.25</td>
</tr>
<tr>
<td>Loại sa do</td>
<td>L (m)</td>
<td>γ</td>
<td>α</td>
<td>β</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>O</td>
<td>19</td>
<td>8</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>P</td>
<td>20</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Q</td>
<td>21</td>
<td>9</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>R</td>
<td>22</td>
<td>22</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>S</td>
<td>23</td>
<td>23</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>T</td>
<td>24</td>
<td>24</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>U</td>
<td>25</td>
<td>25</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>V</td>
<td>26</td>
<td>26</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>X</td>
<td>27</td>
<td>27</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Y</td>
<td>28</td>
<td>28</td>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>
Sơ đồ loại II

1.

2.

3.

4.

5.

T4
1
2
3
4
5
73
1

2

3

4

5
Bài giải

+ Bước 1: Tính phân lực liên kết:

- Phương trình mô men đối với gối B:

\[\sum_{i=1}^{n} M_i(P_i) = 0 \Rightarrow M + qrl \cdot \frac{y_1}{2} - qrl \cdot \frac{y_2}{2} = 0 \]

\[16 + 5.1 \cdot \frac{1}{2} \cdot 10(4.1 - 1) - 5.1 \cdot \frac{1}{2} \cdot 9.56 = 0 \]

\[y_1 = \frac{16 + 2.5 + 30 + 17.5}{4} = 29 \text{ KN} \]

- Phương trình hình chiếu của các lực lên trục y:

\[\sum_{i=1}^{n} P_i y_i = 0 \Rightarrow qy_1 + qy_2 + 29 + y_0 \]

\[y_0 = 2.5 + 10 + \frac{29}{4} \]

\[y_0 = \frac{51}{4} \text{ KN} \]

- Phương trình mô men kiểm tra tình phân lực:

\[\sum_{i=1}^{n} M_i(P_i) = M + qr \left(\frac{y_1}{2} - y_2 \right) + P_0 + qy_2 \left(\frac{r}{4} \right) = 16 + 5 \cdot 4.5 - \frac{51}{4} + 10.1 + 5 \cdot \frac{1}{2} = 0 \]

Vậy phân lực đã tính đúng

+ Bước 2: Phân đoạn:

Thành doc chuyển làm 3 đoạn; sử dụng phương pháp mặt cắt để tô các biểu thức nội lực.

- Xử lý Abd: \(0 \leq z \leq 1 \text{ m} \)

\[+ N_{z=0}: \text{ Không có lực doc.} \]

\[+ Q_{z=0}: \text{ Hạn mức nhất: } Q_1 = \text{ tại A bằng 0; } Q_0. \text{ Tại B bằng -5 KN} \]

\[+ M_{z=0}: \text{ Hạn mức hai: } M_i = \text{ tại A bằng } -16 \text{ KNm; } \text{ Tại B bằng } -18.5 \text{ KNm} \]
- Yët doan BC (1m ≤ z ≤ 3m)

+ N_{22} = 0; Không có lực doc.
+ Q_{2z} = -q^*x + Y_{B} = 0; Q_{2z} = \frac{31}{4} \text{ KN}; Là hàng số trên Z_{2}.
+ M_{2z} = -M - qL_{z}(Z_{2} - \frac{L_{1}}{2}) + Y_{B}(Z_{2} - L_{1}); Là hàng bậc nhất. Tại B M_{2z} = -18,5 \text{ KNm}; Tại C M_{2z} = \frac{19}{4} \text{ KNm}.

- Yët doan CD (0 ≤ z ≤ 1m)

+ N_{3} = 0;
+ Q_{3z} = -Y_{D} + qz_{D}; Hàng bậc nhất: Tại C Q_{3z} = -1\text{ KN}; Tại D Q_{3z} = -\frac{29}{4} \text{ KN}.
+ M_{3z} = Y_{D}z_{D} - qz_{D}^2 \frac{1}{2}; Hàng bậc hai; Tại C M_{3z} = \frac{19}{4} \text{ KNm}.
+ Dallee M_{3z} = 0

Trên đoạn này mò men đất cực trị tại Q_{3} = 0;

Dựa vào liên hệ y vị phân, kiểm tra toàn bộ biểu đồ, ta có biểu đồ nổi lực như hình vẽ.

2. So đo loai II

Sô liệu để bài: q = 5KN/m; P = 10KN; L_{1} = y = 1m; L_{3} = 4m

Bài giải

Bước 1: Tính phân lực liên kết
+ Phương trình mở vòi đuí với điểm A
\[\sum M_{A}(F) = 0 = -\frac{q(L - yL)}{2} + \left(L - yL \right) + P(L - yL) + Y_{B} \Leftrightarrow Y_{C} = \frac{75}{8} \text{ KN} \]
+ Phương trình hình chiếu đuí với trực y
\[\sum F_{y} = 0 = Y_{A} + \frac{q(L - yL)}{2} - P \Leftrightarrow Y_{A} = \frac{35}{2} - \frac{75}{8} = \frac{65}{8} \text{ KN} \]

Bước 2: Phân đoạn, dùng phương pháp mặt cắt việt các biểu thú nổi lực.

Thành dược chia làm hai đoạn AB và BC.
- **Vết doan CB** \((0 \leq x \leq 1 \text{ m}) \)

 + \(N_{c} = 0 \)

 + \(Q_{c} = -Y_{C} \); Hằng số \(Q_{c} = \frac{75}{8} \text{ KN} \).

 + \(M_{a} = -Y_{C} \cdot x_{c} \); Hjem gốc nhải:

 Tại C \(M_{c} = 0 \);

 Tại B \(M_{b} = \frac{75}{8} \text{ KN} \).

- **Vết doan BA** \((1 \text{ m} \leq x \leq 3 \text{ m}) \)

 + \(N_{c} = 0 \)

 + \(Q_{c} = -Y_{C} + q \cdot 2 \text{ m} \cdot P; \) Hjem gốc hai:

 + \(Q_{c} = \frac{5}{8} + \frac{5z^{2}}{8} > 0 \) với mọi \(z \)

 Tại B và phia trái \(Q_{c} = \frac{5}{8} \text{ KN} \)

 Tại A \(Q_{c} = \frac{65}{8} \text{ KN} \).

 + \(M_{a} = Y_{C} (x_{c} + 1) - P \cdot x_{c} \cdot q_{a} = \frac{5z^{2}}{2} - \frac{2}{3} = \frac{5z^{2}}{12} + \frac{75}{8} \text{ KNm} \). Hjem gốc ba:

 Tại B \(M_{b} = \frac{75}{8} \text{ KNm} \)

 Tại A \(M_{a} = 0 \).

3. **Số độc loại III**

Số liệu đầu bài: \(L = 4 \text{ m}; \gamma = 0.4; P = 10 \text{ KN}; M = 16 \text{ KNm}; q = 5 \text{ KN/m} \).

Bài giải

1. **Bước 1**: Tính phân lực liên kết

Thanh CE là thanh chính; Thanh AC là thanh phụ

a. Tính phân lực liên kết cuối thanh phè

+ Phương trình mở men đối với điểm A:

\[
\sum_{m} M(A) = 0 \Rightarrow P_{1} + M + Y_{C} \cdot 3; \quad Y_{C} = -2 \text{ KN}
\]
+ Phương trình bình chiều lê tức Y:

\[\sum P(y) = 0; \quad Y_A + Y_C = P; \quad Y_A = P - Y_C = 12 \text{ KN}. \]

Đặt \(Y_C = 2 \text{ KN} \) vào thanh chính, tính phân bước cho thanh chính:

+ Phương trình mô men đối với gối D:

\[\sum M(D) = 0 = (P + Y_C) \cdot L + Y_C \cdot L^2 = 8 \text{ KN}; \]

+ Phương trình bình chiều lê tức Y:

\[\sum P = 0; \quad Y_D + Y_C + P = Y_D + Y_C + QL = 28 \text{ KN}; \quad Y_D = 20 \text{ KN}; \]

2. Bài 2. Phân đoạn: Viết các biểu thức nội lực:

a. Với điểm phụ: Phân làm hai đoạn AB và BC

- **Đoạn AB** (0 ≤ \(z_A \leq 1 \text{ m} \))

\[+ N_A = 0; \]

\[+ Q_A = Y_A = 12 \text{ KN}; \quad \text{Hạng sô}; \]

\[+ M_A = Y_A \cdot z_A; \quad \text{Bắc nhạt}; \]

Tại A: \(M_{A} = 0 \);

Tại B và phía trái \(M_{AB} = 12 \text{ KNm}; \)

- **Đoạn BC** (1 m ≤ \(z_B \leq 3 \text{ m} \))

\[+ N_B = 0; \]

\[+ Q_B = Y_B = 12 \text{ KN}; \quad \text{Hạng sô}; \]

\[+ M_B = Y_B \cdot z_B; \quad \text{Hạm bậc nhạt}; \quad \text{Tại C} \quad M_{C} = 0; \]

Tại B và phía phải \(M_{BC} = -4 \text{ KNm}; \)

b. Với thanh c正面 CE

- **Đoạn CD** (0 ≤ \(z_C \leq 1 \text{ m} \))

\[+ N_C = 0; \]

\[+ Q_C = P - Y_C = -10 + 2 = -8 \text{ KN}; \quad \text{Hạng sô}; \]

91
+ M_{AC} = (P - Y_c) z_1; \quad \text{Hàm bậc nhất:} \quad \text{Tại C} \quad M_{AC} = 0; \quad \text{Tại D} \quad \text{và} \quad M_{AD} = - 8 \text{ KNm};

- \text{Kết luận DE} \quad (0 \leq z_4 \leq 4 \text{ m})

+ N_{z4} = 0;

+ Q_{z4} = - Y_e + q z_4; \quad \text{Hàm bậc nhất:} \quad \text{Tại D và phải} \quad Q_{P4} = 12 \text{ KN;}

\quad \text{Tại E} \quad Q_{z4} = - 8 \text{ KN;}

+ M_{z4} = Y_e \cdot z_4 \cdot \frac{q z_4}{2}; \quad \text{Hàm bậc hai:} \quad \text{Tại E} \quad M_{z4} = 0;

\quad \text{Tại D và phải} \quad M_{z4} = - 8 \text{ KNm;}

Đặt cụ thể tại z_4 = \frac{8}{5} \text{ m;} \quad M_{max} = \frac{32}{5} \text{ KNm;}

4. Sai độ lỗi IV
Số liệu để bài: \quad L = 4 \text{ m;} \quad \gamma = 0.25; \quad P = 10 \text{ KN;} \quad q = 5 \text{ KN/m;} \quad M = 16 \text{ KNm;}

Bài giải

1. Bài 1 - Tính phân lực liên kết

+ Phương trình hình chiếu lên phương ngang:

\[X_4 = 0; \]

+ Phương trình mô men đối với điểm A:

\[\sum M_4 (F_i) = 0 = Y_{P4} \cdot 4 - q \cdot 4.2 \cdot M - P \cdot 4 \cdot M; \]

\[Y_e = \frac{40 + 2.16 + 40}{4} = 28 \text{ KN} \]

+ Phương trình hình chiếu lên phương thẳng đứng:

\[Y_4 + Y_{P4} = P + 4 \cdot q; \quad Y_4 = 2 \text{ KN} \]

2. Bài 2 - Chia đoạn; Việt biểu thức mối lực

Khung được chia thành 5 đoạn:
- **Xét đoạn CD**

\((0 \leq z_1 \leq 4\ m) \)

+ \(N_{10} = 0 \)
+ \(Q_{21} = P \); Hàng số;
+ \(M_{12} = P \cdot z_1 \); Hàng bậc nhất;
+ Tai D: \(M_{12} = 0 \);

Tai C: \(M_{12} = -4 \cdot P = -40\ KNm \) (căng thồ trên);

- **Xét đoạn CB**

\((0 \leq z_2 \leq 1\ m) \)

+ \(N_{12} = -P = 10\ KN \) (chùm nén); Hàng số;
+ \(Q_{21} = 0 \);
+ \(M_{12} = -M - 4 \cdot P = 56\ KNm \) (căng thồ trái); Hàng số

- **Xét đoạn BE**

\((0 \leq z_3 \leq 4\ m) \)

+ \(N_{20} = 0 \);
+ \(Q_{32} = 0 \);
+ \(M_{21} = -M = 16\ KNm \) (căng thồ trên);

- **Xét đoạn BA**

\((0 \leq z_4 \leq 3\ m) \)

+ \(N_{11} = Y_{A} + Y_{F} - q \cdot 4 = 10\ KN \) (chùm nén);
+ \(Q_{32} = 0 \);
+ \(M_{21} = Y_{A} \cdot 4 - q \cdot 4 = 72\ KNm \) (căng thồ trái); Hàng số;

- **Xét đoạn BF**

\((0 \leq z_5 \leq 4\ m) \)

+ \(N_{21} = 0 \);
+ \(Q_{32} = Y_{F} \cdot z_5 = \frac{9qz_5^2}{2} \); Hàng bậc hai;

Tai F: \(M_{21} = 0 \);

Y\$ tại A: \(M_{12} = 72\ KNm \) (căng thồ dưới);

93
5. Sơ đồ loại V

Sơ liều đề bài: \(M = qR^2 \text{ KNm}; \ P = qR \text{ KN}; \ q = 5 \text{ KN/m} \)
Bài giải

1. Bài 1 - Tính phân lực liên kết:

+ Phương trình mô men đối với gói A:

\[\sum M_i(F_i) = 0 = M + P \cdot R - \frac{q R^2}{2} + Y_a R - P \cdot R \sqrt{2}; \]

\[Y_a = q R (\sqrt{2} - \frac{3}{2}) = -0.085 q R; \]

+ Phương trình hình chiếu lên phương nam ngang:

\[\sum P_{y_i} = 0 = X_a + P \cdot \frac{P \sqrt{2}}{2}; \]

\[X_a = -0.3 q R; \]

+ Phương trình hình chiếu lên phương thẳng đứng:

\[\sum P_{x_i} = 0 = Y_a + Y_a - q R \sqrt{2} \]

\[Y_a = 1.792 q R; \]

2. Bài 2 - Phân đoạn thảm; Việt biểu thúc nội lực:

Thành được chia làm 3 đoạn.

- Khoảng đoạn AB

(0 ≤ z ≤ R m)

\[\begin{align*}
+ N_a &= 0.3 q R; \\
+ Q_a &= 1.792 q R - q z; \\
\end{align*} \]

Tại A: \(Q_{Ax} = Y_a = 1.792 q R; \)

Tại B: \(Q_{Bx} = 0.792 q R; \)

\[+M_{Ax} = 1.792 q R \cdot z - \frac{q z^2}{2}; \]

Hàm bậc hai:

Tại A: \(M_{Ax} = M_a = q R^2; \)

Tại B: \(M_{Bx} = 0.3 q R^2; \)

- Khoảng đoạn CD

(0 ≤ z ≤ 45°)

96
\[N_x = P \sin \alpha \]
\[Q_y = -P \cos \alpha \]
\[M_z = -PR \sin \alpha \]

\[
\begin{array}{|c|c|c|}
\hline
\alpha & 0 & 45 \\
\hline
N_x & 0 & \frac{qR}{2} \\
Q_y & -qR & -0.85qR \\
M_z & 0 & -0.5qR^2 \\
\hline
\end{array}
\]

- Yết đạo BD (45° ≤ α ≤ 90°)

\[N_x = P \sin \alpha - Pr \sin (\alpha - 45°) \]
\[Q_y = -P \cos \alpha + Pr \cos (\alpha - 45°) \]
\[M_z = -PR \sin \alpha + Pr \sin (\alpha - 45°) \]

\[
\begin{array}{|c|c|c|}
\hline
\alpha & 45° & 75° & 90° \\
\hline
N_x & 0.7qR & 0.46qR & 0.3P \\
Q_y & 0.3qR & 0.81qR & qR \\
M_z & -0.7qR^2 & -0.46qR^2 & -0.3qR^2 \\
\hline
\end{array}
\]
BÀI TẬP LỚN SỐ 2

Tên bài: ĐÁC TRUNG HÌNH HỌC CỦA HÌNH PHẢNG

Mô tả viễn tâm 2 bài trong một lượng số đó.

Yêu cầu nội dung:

1. Vẽ lại hình theo dạng kỹ lưỡng, xác định trọng tâm của hình.
2. Xác định mô men quả tinh đồi với hai trục vương góc 45 độ qua trọng tâm của hình.
3. Xác định vị trí hệ trục quả tinh chính tương관 đúng vào hệ trục đã chọn ở trên.
4. Xác định mô men quả tinh chính trung tâm.
5. Xác định bán kính quả tinh chính.
6. Xây dựng vòng Mo qua tinh điểm, dùng vòng Mo kiến tra lại kết quả ở trên.
7. Tính mô men quả tinh của hình đồi với trục hợp với một trong hai trục quả tinh chính trung tâm môt góc 45 độ, kiểm tra kết quả trên vòng Mo quả tinh.

Số liệu chọn trước theo bảng 2.
<table>
<thead>
<tr>
<th>Chữ cái</th>
<th>Chữ cái thứ hai</th>
<th>Chữ cái thứ ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b (cm)</td>
<td>h (cm)</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>G</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>H</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>I</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>K</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>L</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>M</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>N</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>O</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Ô</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Chữ cái</td>
<td>Chữ cái thứ hai</td>
<td>Chữ cái thứ ba</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>O</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>P</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Q</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>R</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>S</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>T</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>U</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>V</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>X</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td>Y</td>
<td>28</td>
<td>10</td>
</tr>
</tbody>
</table>
BÀI GIẢI MẪU BÀI TẬP LỚN SỐ 2

Tên bài: Xác định diện tích hình học của hình phẳng
Số liệu đầu bài: a = 10 cm; b = 12 cm; h = r = 15 cm;

Bài giải

1. Sơ đồ logi 1

Hình số 1

Hình số 2

1. Xác định trong tần của hình phẳng
Ta chia thành hai hình: Hình số 1 là hình tam giác, hình số 2 là nửa hình tròn.

- Xét hình số 1: a. Tính toạ độ trọng tâm (Chọn hệ trục chuẩn x,y)

\[
dF = a, dy
\]

\[
a_0 = \frac{b - y_j}{a} = \frac{b}{a}
\]

\[
h = \frac{b - y_j, a}{b}
\]

\[
y_s = \frac{S_x}{F} = \frac{ab}{2} \quad \text{theo hệ trục toạ độ xy.}
\]

\[
S_y = \int y, dy = \frac{ab^2}{6}
\]

[180]
\[\gamma = \frac{ab^2}{2} \frac{2}{6} \frac{b}{ab} = \frac{b}{3} \]

+ \(x_t = \frac{Sy}{F}\) Tính trọng tâm như trên có kết quả:

\[x_t = -\frac{b}{3} \] Theo hệ trực toa do \(x,y\);

b. Tính mở men quan tính đối với hệ trực \(x,y\);

+ \(J_x = \frac{1}{2} \int y^2 \, dy = \int y^2 ((1 - \frac{Y}{b})a \, dy \)
\[J_x = \frac{ab^3}{12} \]

+ \(J_y = \) Tính trọng tâm ta có:
\[J_y = \frac{ba^3}{12} \]

c. Mở men quan tính ly tâm đối với hệ trực \(x,y\)
\[J_{xx} = \int x^2 \, dy = \int x^2 \, dy \]
\[J_{yy} = \int y^2 \, dx = \int y^2 \, dx \]
\[J_{xy} = \int xy \, dx \]
\[J_{xx} = \frac{ab^3}{12} \]
\[J_{yy} = \frac{ba^3}{12} \]
\[J_{xy} = \frac{ab^3}{24} \frac{a^2 b}{24} = \frac{ab^2}{24} \]

d. Mở men quan tính đối với hệ trực di qua trọng tâm của hình số 1

+ Mở men quan tính đối với trục \(y\)
\[J_{y} = \int \left(\frac{a}{2} \right)^2 \frac{a}{2} \]
\[J_{y} = \frac{ba^3}{12} \]

+ Mở men quan tính đối với trục \(x\)
\[J_{x} = \int \left(\frac{b}{2} \right)^2 \frac{b}{2} \]
\[J_{x} = \frac{ab^3}{12} \]

+ Mở men quan tính ly tâm đối với hệ trực \(x\); \(y\)
\[J_{x}, J_{y}, J_{xy} \]
\[J_{x}, J_{y}, J_{xy} \]

- Việc hình số 2 và hé hình tròn

a. Xác định trọng tâm (Chọn hệ trực toa do chung \(x,y\))
Trục y_2 là một trục đối xứng, nên nó là một trục quan tính chính trục tâm.

\[y_2 = \frac{S_{12}}{F}; \quad S_{12} = \oint dS_{12}; \quad dS_{12} \text{ là mô men tích của phần ô diện tích hình quạt đối với trục } x_2; \]

\[dS_{12} = y \, dF; \quad dF = \frac{1}{2} r \, ds = \frac{1}{2} r \, dp \, r; \]

\[y = \frac{2}{3} \, \text{min} \phi; \]

\[S_{12} = 2 \, \int_0^{\phi} \left(\frac{2}{3} \, r \, \text{sin} \phi \right) \, r \, dp \, r = \frac{2}{3} \, r^2 (-\cos \phi); \]

\[\phi = \frac{2}{3} \, r^2 \phi; \]

\[Y_{12} = \frac{3}{8} \, \frac{2r^2}{2} = \frac{4r^2}{3}; \]

\[Y_{12} = 0 \text{ khi } r = 0, 1, 2, 3, 4, \ldots \]

+ Mô men quan tính đối với trục x_2:

\[J_2 = \frac{1}{2} \, \frac{m_2^4}{4} = \frac{m_2^4}{8}; \quad m_2 = \frac{r}{3} \left(\phi + \cos \phi \right); \]

+ Mô men quan tính đối với trục x_2 chỉ qua trục x_2 của quạt quang tâm x_2:

\[J_{22} = \frac{m_2^4}{8} \left(\frac{3}{2} \right)^2 = \frac{r^4}{8} \left(\frac{3}{2} \right)^2; \]

Hây $J_{22} = 155.0.10^4 = 5518$.

+ Mô men quan tính đối với trục y_2:

\[J_{22} = 0 \text{ khi } r = 0, 1, 2, 3, 4, \ldots \]

\[J_{33} = \frac{1}{2} \left(\frac{r}{3} \right)^4 = \frac{r^4}{2} \left(\frac{3}{2} \right)^2; \]

Hây $J_{33} = 155.0.10^4 = 5518$.
- Vẽ hình ghép

Tọa độ trong tam bình phẳng đối với hệ trục x_0, y_0:

$$ F_1 = \frac{b \cdot 4r}{3} \left(\frac{3}{3} \right) \frac{ab}{2} \left(\frac{b + 4r}{3} \right) \frac{ab}{2} \left(\frac{b + 4r}{3} \right)$$

$+ x_0 = \frac{ab}{2} \left(\frac{b + 4r}{3} \right) \frac{ab}{2} \left(\frac{b + 4r}{3} \right)$$

Hay $x_0 = \frac{10.12}{2} + \frac{60}{3.34} + \frac{10.12 + 3.14.15}{2} + \frac{622}{413} = 1.5 \text{ cm}$

$$y_0 = \frac{-10.12}{2} + \frac{5}{5} + \frac{10}{3} = \frac{10.12}{2} + \frac{25}{3} + 413 = -1.2 \text{ cm}$$

Vậy tọa độ trong tam bình của hình ghép đối với hệ trục x_0, y_0 là:

$C (1.5; -1.2); qua C dùng hệ trục XCY$.

2. Mô men quán tính đối với hệ trục XCY

Dùng công thức chuyển trục song song ta tính:

$+ M_0 = J_{0} (0.15; 1.5; F_2 + J_{0} (44; 4.86; F_1)$

$+ J_{0} = \left(\frac{5.518 - 1.5^2 \left(\frac{3.14.15}{2} \right)}{2} + \frac{1}{36} \right) + 10.12^2 + 8.86^2.10.6 = 9913$;

$+ M_0 = J_{0} (0.15; 1.5; F_2 + J_{0} (1.5; + 3.8) F_1$,

$+ J_{0} = \left(\frac{5.518 - 1.5^2 \left(\frac{3.14.15}{2} \right)}{2} + \frac{1}{36} \right) + 10.12^2 + \left(\frac{21.4}{3} \right)^2.10.6 = 23785$;

$+ M_0 = J_{0} (0.15; 1.5; F_2 + J_{0} (1.5; + 3.8) F_1$,

$+ J_{0} = \left(\frac{5.518 - 1.5^2 \left(\frac{3.14.15}{2} \right)}{2} + \frac{1}{36} \right) + 10.12^2 + \left(\frac{21.4}{3} \right)^2.10.6 = 23785$;

$+ M_0 = J_{0} (0.15; 1.5; F_2 + J_{0} (1.5; + 3.8) F_1$,

$+ J_{0} = \left(\frac{5.518 - 1.5^2 \left(\frac{3.14.15}{2} \right)}{2} + \frac{1}{36} \right) + 10.12^2 + \left(\frac{21.4}{3} \right)^2.10.6 = 23785$;

$+ M_0 = J_{0} (0.15; 1.5; F_2 + J_{0} (1.5; + 3.8) F_1$,

$+ J_{0} = \left(\frac{5.518 - 1.5^2 \left(\frac{3.14.15}{2} \right)}{2} + \frac{1}{36} \right) + 10.12^2 + \left(\frac{21.4}{3} \right)^2.10.6 = 23785$;

3. Xác định vị trí hệ trục quán tính chính trùng tâm
\[\tan \theta = \frac{2J_{xy}}{J_y - J_x} = \frac{2,4228}{23765 - 9913} = \frac{6456}{13852} = -0.616; \]
\[2\alpha = 31^\circ 38'; \quad \alpha = 15^\circ 49'. \]

4. Mô men quán tính chính trọng tâm

\[J_{\text{max}} = \frac{J_x + J_y}{2} \pm \frac{1}{2} \sqrt{(J_x - J_y)^2 + 4J_{xy}^2} \]

Thay số ta có
\[J_{\text{max}} = 24953.5 \text{ cm}^4 \]
\[J_{\text{min}} = 8724.5 \text{ cm}^4. \]

5. Xác định bán kính quán tính

\[i_{\text{max}} = \sqrt{\frac{J_{\text{max}}}{F}} = \sqrt{\frac{24953.5}{413}} = 7.77 \]
\[i_{\text{min}} = \sqrt{\frac{J_{\text{min}}}{F}} = \sqrt{\frac{8724.5}{413}} = 4.597 \]

6. Xây dựng vòng Mor quán tính

\[R = \sqrt{\left(\frac{J_y - J_x}{2}\right)^2 + J_{xy}^2} = \sqrt{\left(\frac{9913 - 23765}{2}\right)^2 + 4228^2} = 8114.52 \]

+ Kiểm tra bằng vòng Mor quán tính

111
\[J_{\text{max}} = \frac{x_x + x_y}{2} + R = \frac{9913 + 23765}{2} = 16839 \, \text{cm}^2 \]

\[J_{\text{min}} = \frac{x_x + x_y}{2} - R = \frac{9913 - 23765}{2} = -6951 \, \text{cm}^2 \]

\[\tan \frac{\theta}{2} = \frac{-J_{xy}}{J_x - J_y} = \frac{4228}{9913 - 23765} = 0.305; \quad \theta = 15.49^\circ \]

Qua kết quả kiểm tra ta thấy quá trình tính toán ở trên là đúng.

7. Tính mô men quan tính của hình có trục hợp với một trong hai trục trên một góc 45°

\[J_0 = \frac{1}{2} (x_x + y_y) + \frac{1}{2} (x_x - y_y) \cos 90^\circ - J_{xy} \sin 90^\circ = \]

\[= \frac{9913 + 23765}{2} + \frac{9913 - 23765}{2} = 21067 \, \text{cm}^4 \]

\[J_y = \frac{1}{2} (x_x + y_y) + \frac{1}{2} (x_x - y_y) \cos 90^\circ + J_{xy} \sin 90^\circ = \]

\[= \frac{9913 + 23765}{2} + \frac{9913 - 23765}{2} = 12611 \, \text{cm}^4 \]

\[J_{xy} = \frac{1}{2} (x_x - y_y) \sin 90^\circ + J_{xy} \cos 90^\circ = \]

\[= \frac{9913 - 23765}{2} + 0 = 6826 \, \text{cm}^4 \]

\[J_x + J_y = 9913 + 23765 = 33678 \, \text{cm}^4; \]

\[J_x + J_y = 21067 + 12611 = 33678 \, \text{cm}^4; \]

112
So đồ được ghi:
Thép chứa C số hiệu 24
Thép góc 110°*110*8

1. Tra bảng thép:
+ Thép góc 110°*110*8; F = 17,2 cm²:
 - $J_x = 198$ cm4; $i_x = 3,39$ cm; Với hệ trục $x-x$;
 - $J_{x0,mm} = 835$ cm4; $i_{x0,mm} = 7,45$ cm; Với hệ trục x_0-x_0;
 - $J_{h0,mm} = 224$ cm4; $i_{h0,mm} = 2,18$ cm; Với hệ trục y_0-y_0;
 - $J_y = 353$ cm4; $i_y = 3$ cm; Với hệ trục x_0-x_0;
+ Thép chứa C số hiệu 24 có:
 - Trọng lượng 1 m: 240 N;
 - $h = 24$ cm; $b = 9$ cm; $d = 0,56$ cm; $a = 10$; $r = 0,105$ cm; $F = 30,6$ cm;
 - $J_x = 2900$ cm4; $i_x = 9,73$ cm; $S_x = 139$ cm3;
 - $J_y = 208$ cm4; $i_y = 31,6$ cm; $S_y = 2,42$ cm;

2. Xác định tạo độ trọng tâm (lấy hệ trục x,y liên chuẩn)
$a_{h0,x} + b y = 2,42 + 9 + a = 34,42$ cm

113
1. Xác định mô men quang tính đối với hệ trục X, Y:

- $C_i = a_i X_i = 5,39 \text{ cm}$;
 - $b_i = Y_i = 5,76 \text{ cm}$;
 - $a_i = a_1 = z_1 + b_2 = 2 = 3,16 \text{ cm}$;
 - $b_i = \frac{b_1 - b_1 - z_1}{2} = 3,28 \text{ cm}$;

+ Mô men quang tính đối với trục Y

Đồng công thức chuyển trục song song:

- $J_x = J_x^1 + J_x^2 = a_1^2 F_1 + a_2^2 F_2 = 889,6 + 171,75 = 1061,35 \text{ cm}^4$;
- $J_y = J_y^1 + J_y^2 = b_1^2 F_1 + b_2^2 F_2 = 1015,76 + 180,39 = 1196,15 \text{ cm}^4$;
- $J_{xy} = J_{xy}^1 + J_{xy}^2 = 3,6 \cdot (-3,28) \cdot 17,2 = -178,27 \text{ cm}^4$;
- $J_{xy} = 950,01 - 178,27 = 771,74 \text{ cm}^4$;

4. Tìm vị trí hệ trục quang tính chính trung tâm

- $\alpha_x = -\frac{2 J_{xy}}{J_x - J_y} = -\frac{-2771,74}{1966,15 - 1061,35} = -11,45^\circ$;
- $\alpha_y = 85^\circ$;

5. Xác định mô men quang tính chính trung tâm

- $J_{xx} = \frac{J_x - J_y}{2} + \frac{1}{2} \sqrt{(J_x - J_y)^2 + 4 J_{xy}^2} = 1218,68 + \frac{1}{2} \sqrt{99686,64 + 2398078,33} = 2008,89 \text{ cm}^4$.

6. Xác định bán kính quanh tính chính
 \[i_{\text{max}} = \sqrt{\frac{J_{\text{max}}}{F}} = \sqrt{\frac{2008.89}{47.8}} = 6.48 \text{ cm}; \]
 \[i_{\text{min}} = \frac{J_{\text{min}}}{F} = \frac{428.46}{47.8} = 2.99 \text{ cm}; \]

7. Xây dựng vòng Mor quanh tính; Đứng vòng Mor kiểm tra kết quả:
 + Xây dựng vòng Mor quanh tính

![Diagram of Mor circle](attachment:image.png)

\[R = \sqrt{\left(\frac{I_x - I_y}{2}\right)^2 + I_{xy}^2} = \sqrt{157.46^2 + 774.28^2} = 790.215 \text{ cm}; \]

+ Đứng vòng Mor kiểm tra
\[J_{\text{MAX}} = \frac{J_x + J_y}{2} + R = 1218.68 + 790.21 = 2008.89 \text{ cm}^4; \]
\[J_{\text{MIN}} = \frac{J_x + J_y}{2} - R = 1218.68 - 790.21 = 428.46 \text{ cm}^4; \]
\[t_{\text{PU}} = \frac{-J_{xy}}{J_{\text{MAX}} - J_{\text{MIN}}} = \frac{-771.74}{2008.89 - 1061.35} = -5.23 \]
\[\alpha = -42^230; \]
Nur vì quá trình tính ở trên là đúng.

145
8. Tính nâng men quán tính của hình đã với trực hợp với một trong hai trực X,Y một góc 45°

\[
I_x = \frac{J_x + J_Y}{2} - \frac{J_x - J_Y}{2} \cos 90° - J_{xy} \sin 90° = \\
\frac{1196,15 + 1061,35}{2} - \frac{1196,15 - 1061,35}{2} = 357,01 \text{ cm}^4
\]

\[
J_x = \frac{J_x + J_Y}{2} - \frac{J_x - J_Y}{2} \cos 90° + J_{xy} \sin 90° = \\
\frac{1196,15 + 1061,35}{2} - \frac{1196,15 - 1061,35}{2} + 771,74 = 1900,49 \text{ cm}^4
\]

\[
I_x + J_y = 1196,15 + 1061,35 = 2257,5;
\]

\[
I_x + J_y = 357,01 + 1900,49 = 2257,5;
\]

\[
I_x + J_y = I_o + J_o = \text{const};
\]

\[
I_{xy} = \frac{J_{xy} - J_{xy}}{2} \sin 90° + J_{xy} \cos 90° = 157,85 \text{ cm}^4;
\]
BÀI TẬP LỚN SỐ 3

Tên bài: TÍNH THANH CHỊU LỰC PHÔC TAP

Yêu cầu hỗ trợ dụng:

1. Về biểu đồ nơi lực (lực doc, lực cắt, mô men uốn, mô men xoắn).

2. Thanh có tiếp diện chữ nhật có tỷ số giữa chiều cao và chiều rộng của tiếp diện chọn trong khoảng $\frac{h}{b} = 1,5 - 2$. Hãy chọn tiếp diện theo ứng suất phá phế, biết rằng $\sigma = 16000$ N/cm².

3. Sau khi đã chọn tiếp diện, tiến hành kiểm tra theo yêu cầu sau:
 a. Kiểm tra bén theo ứng suất phá phế.
 b. Kiểm tra bén theo ứng suất tiếp, biết $[\tau] = 10000$ N/cm².
 c. Kiểm tra bén theo thuyết bén.

Các số liệu cho trong bảng 3.

Cháy: Khi xác định kích thước theo yêu cầu 2, có thể bỏ qua ảnh hưởng của lực cắt và lực doc. Nhưng khi tiến hành kiểm tra bén thì cần phải xét đến ảnh hưởng của chúng.
<table>
<thead>
<tr>
<th>Chữ cái</th>
<th>Chữ cái mủ nhất</th>
<th>Số đế bái</th>
<th>Chữ cái thứ hai</th>
<th>Chữ cái thứ ba</th>
<th>Trọng P (KN)</th>
<th>q (KN/m)</th>
<th>Góc α (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>8</td>
<td>50</td>
<td>20</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>7</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>5</td>
<td>40</td>
<td>20</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>9</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>10</td>
<td>2</td>
<td>40</td>
<td>20</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>11</td>
<td>2</td>
<td>40</td>
<td>20</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>12</td>
<td>4</td>
<td>40</td>
<td>15</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>13</td>
<td>8</td>
<td>30</td>
<td>10</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>14</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>15</td>
<td>3</td>
<td>40</td>
<td>20</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>15</td>
<td>2</td>
<td>30</td>
<td>10</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>17</td>
<td>3</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>18</td>
<td>5</td>
<td>50</td>
<td>20</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>19</td>
<td>6</td>
<td>40</td>
<td>15</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>20</td>
<td>4</td>
<td>60</td>
<td>40</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>21</td>
<td>5</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuỗi cài</td>
<td>Chuỗi cài thứ nhất</td>
<td>Chuỗi cài thứ hai</td>
<td>Chuỗi cài thứ ba</td>
<td>Chuỗi cài thứ tư</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Số đế bái</td>
<td>L(m)</td>
<td>P (KN)</td>
<td>q (KN/m)</td>
<td>Góc α (°)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>22</td>
<td>2</td>
<td>80</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>23</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>24</td>
<td>4</td>
<td>70</td>
<td>40</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>25</td>
<td>6</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>26</td>
<td>5</td>
<td>60</td>
<td>20</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>28</td>
<td>2</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>29</td>
<td>2</td>
<td>30</td>
<td>40</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BÀI GIẢI MÃU BẢI TẬP LỚN SỐ 3

Tên bài: Tính thanh chịu lực phục tập

Số liệu đầu bài:
- $\alpha = 30^\circ$;
- $L = 4$ m;
- $P = 20$ KN;
- $q = 10$ KN/m;
- $h = 2$;

Bài giải

1. Vẽ biểu đồ nội lực

Ta chia hệ thanh làm ba đoạn. AB; BC; CD.

a. Vé đoạn CD ($0 \leq z \leq 0,5L$)

+ $N_{z} = 0$; $M_{z} = 0$ (Lực doc, mô mỏ xoắn bằng không)
+ $Q_{z} = qz_{1}$; Hiện bậc nhất: Tại D $Q_{zD} = 0$;
+ Tại C $Q_{zC} = 0,5qL$.

128
b. \textit{Xét đoạn BC} (0 \leq z_b \leq 0,5L)

- N_{bc}=0;
- Q_{bc}=-0,5 P; Hạng sọ;
- M_{bc}=-0,5 P L z_b; Hầm bắc nhất;

Tại C có M_{cc}=0;
Tại B có M_{bc}=0,25ql^2;
+ M_{bc}=0,125 ql^2; Hạng sọ;

\begin{align*}
\text{c. \textit{Xét đoạn AB}} & \quad (0 \leq z_a \leq 0,5L) \\
N_{oa}=0; \\
Q_{oa}=-0,5 P; Hạng sọ; \\
Q_{oa}^* & = \frac{\sqrt{3}}{2} P + \frac{ql}{2}; Hạng sọ; \\
M_{oa} & = \frac{\sqrt{3}}{2} P z_a + \frac{ql}{2} \left(L + z_a \right); Bếc l \\
Tại B có M_{oa}=0,125ql^2; \\
Tại A có M_{oa}^* & = P\frac{\sqrt{3}}{4} L + \frac{3L^2}{8} \\
+ M_{oa}=0,5Pz_a; Hầm bắc nhất; \\
Tại B có M_{oa}=0; \\
Tại A có M_{oa}=0,25PL; \\
\end{align*}
Nhin trên biểu đồ nội lực, ta thấy mặt cắt nguy hiểm ở ngăn A.

2. Chọn kích thước mặt cắt ngang theo đúng suát phù hợp
Biết mặt cắt chịu nhất có \(b = 2; \quad [a] = 16 \text{ KN/cm}^2 \)

+ \(W_s = \frac{bh^2}{6} = \frac{2b^3}{3} \)
+ \(W_r = \frac{bh^2}{6} = \frac{b^3}{3} \)

Tai ngâm:

\[c_{\text{max}} = \frac{M_s}{W_s} + \frac{M_r}{W_r} \times [a] \]

Hay

\[\frac{M_s}{2b^2} + \frac{M_r}{b^2} \leq [a] \]

\[b^2 \geq \frac{3M_r + 6M_s}{2[a]} \]

Thay số

\[b \geq \sqrt{\frac{3.668.66 + 6.20.100}{2.16}} = \sqrt{181.85} = 10 \text{ cm} \]

Ta có mặt cắt sớp bố là:

\(h = 20 \text{ cm}; \)
\(b = 10 \text{ cm} \)

3. Kiểm tra bền

a. Theo phân tổ trạng thái ứng suất đơn

+ Mạt cắt kiểm tra

\[\text{Mặt cắt có mó men uốn lớn nhất; Tai ngâm;} \]

+ Diểm kiểm tra

Tai các góc của mặt cắt (thời có ứng suất phức lớn nhất)

Bài toán này không có lực đúc, vì vậy điều kiện bền theo phân tổ trạng thái ứng suất đơn đã được thỏa mãn.

b. Theo phân tổ trạng thứ tư

+ Mạt cắt kiểm tra

Tai mặt cắt có mô xoa xắn và lực cắt lớn nhất:

Mặt cắt tại ngãm A.

+ Diểm kiểm tra: Tai đường dải cung dây (có \(\gamma_{\text{max}} \)).
+ Chúng thức kiểm tra
- Sử dụng tốt độ mô men xoắn gây ra:

$$\tau_{m} = \frac{M_{max}}{W_{max}} \cdot \beta$$

trả bằng với $h=2b$ thì $\beta = 0,493$;

$$M_{max} = 0,254l^{2} = 40 \text{ KNm};$$
$$\tau_{m} = \frac{40.10^{2}}{0,493.10^{5}} = 8,11 \text{ KN/cm}^{2};$$

- Sử dụng tốt độ lực cắt Q, gây ra lọn nhất tại trung điểm cạnh dài

Giá trị lọn nhất cùng tại ngậm A, vị mặt cắt chứ nhất có: $Q_{o} = 28,6 \text{ KN}$

$$\tau_{Q} = \frac{3Q_{o}}{2F} = \frac{3.28.6}{2.20.10} = 0,2145 \text{ KN/cm}^{2};$$

- Sử dụng tốt độ lực cắt Q, gây ra lọn nhất tại trung điểm cạnh ngắn có trị số nhỏ, nên ta không cần xét đến: $Q_{o} = 10 \text{ KN}$

$$\tau_{Q} = \frac{3Q_{o}}{2F} = \frac{3.10}{2.20.10} = 0,075 \text{ KN/cm}^{2};$$

- Sử dụng tốt độ tại trung điểm cạnh dài:

$$\tau_{m} = \tau_{m}^{1} + \tau_{m}^{2} = 8,11 + 0,2145 = 8,3245 \text{ KN/cm}^{2} < [\tau]$$

Vậy phần tốt an toàn;

c. Kiểm tra bên theo phần tổ trục thái um sử dụng phẳng

Trong trường hợp bày toán này, mặt cắt hình chữ nhật, ta kiểm tra bên tài các điểm I (trung điểm cạnh dài), điểm K (trung điểm cạnh ngắn)

$$+ \text{Tai điểm I:}$$

- Sử dụng tốt pháp

$$\sigma_{I} = \frac{M_{I}}{W_{I}} = \frac{3.20.10^{3}}{10^{3}} = 6 \text{ KN/cm}^{2};$$

- Sử dụng tốt tiếp

$$\tau_{max} = 8,3245 \text{ KN/cm}^{2}$$

- Theo thuyết bền 4:

$$\sigma_{max} = \sqrt{\sigma^{2} + 4\tau^{2}} = \sqrt{6^{2} + 8.32^{2}} = \sqrt{105.22} = 10,25 \text{ KN/cm}^{2} < [\sigma];$$

132
Phần tô điểm giữa cạnh dài an toàn.
+ Tại điểm K (điểm giữa cạnh ngắn)
 - Ước suất pháp
 \[\sigma_f = \frac{M_n}{W_s} = \frac{1.68.66.10^3}{2.10^3} = 10.3 \text{ KN/cm}^2 \]
 - Ước suất tiếp do mó men xoắn
 \[\tau_f = \frac{M_n}{W_t} = \frac{1.795.8.11}{2.10^3} = 6.45 \text{ KN/cm}^2 \]
 - Ước suất tiếp do lực cắt Q_s
 \[\sigma_s \leq 0.075 \text{ KN/cm}^2 (đạt tính ở trên) \]
 \[\tau_s \leq \frac{M_s}{W_t} \leq 6.45 \text{ KN/cm}^2 \]
 - Theo thuyết bên 4:
 \[\sigma_m = \sqrt{\sigma_f^2 + 4\tau_s^2} = \sqrt{(10.3)^2 + (6.45)^2} = \sqrt{106.09 + 42.57} = 12.19 \text{ KN/cm}^2 \]
Vậy phần tô trung điểm cạnh ngắn an toàn.
+ Kết luận: Toán bộ hệ thân an toàn khi ta chọn kích thước mặt cắt ngang như ở bước 2.
BÀI TẬP LỚN SỐ 4

Tên bài: TÍNH ỔN ĐỊNH CỦA THANH CHIỀU NÊN DÙNG TÂM

Tính ổn định của thanh chịu nén, với các loại mặt cắt I, II, III và liên kết như hình vẽ.

Yêu cầu nội dung:

1. Chọn kích thước mặt cắt ngang, đưa vào hệ số ϕ và cơ Thường chịu lực nén dùng tâm P. Cho các ứng suất cho phép như sau:
 \[\sigma = 1000 \text{ N/cm}^2, \text{với thanh làm từ vật liệu} \text{gỗ} \]
 \[\sigma = 16000 \text{ N/cm}^2, \text{với thanh做成 hợp vật liệu thép} \]

2. Xác định lực tối hạn, hệ số an toàn cho các thanh. Biệt mò dẫn dẫn hồi:
 - Cửa gỗ: \(E_g = 10^9 \text{ N/cm}^2\)
 - Cửa thép: \(E_t = 2.10^7 \text{ N/cm}^2\)

3. Các hệ số trong công thức Iasinski \(σ_n = a - b\)

4. Với gỗ: \(a = 4000 \text{ N/cm}^2, b = 20,3 \text{ N/cm}^2\)

5. Với thép: \(a = 31000 \text{ N/cm}^2, b = 114 \text{ N/cm}^2\)

Chú ý:
- Tài trong và chiều dài thanh cho trong bảng ứng với mặt cắt loại I.
- Với thanh cơ mặt cắt loại II: Tài trong tăng lên 3 lần, chiều dài tăng lên 1,5 lần so với số liệu trong bảng.
- Với thanh mặt cắt loại III: Tài trong tăng 10 lần, chiều dài tăng ba lần so với số liệu trong bảng.

134
<table>
<thead>
<tr>
<th>Chữ cái</th>
<th>Chữ cái thứ nhất</th>
<th>Chữ cái thứ hai</th>
<th>Chữ cái thứ ba</th>
<th>Chữ cái đầu cuối của họ</th>
<th>Tài trọng với mất cát loại I</th>
<th>Chỉ định với mất cát loại I</th>
<th>Liên kết</th>
<th>Mạt cuối I</th>
<th>Mạt cuối II</th>
<th>Mạt cuối III</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>50</td>
<td>100</td>
<td>205</td>
<td>1.2</td>
<td>2.4</td>
<td>4.5</td>
<td>1</td>
</tr>
<tr>
<td>Á</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>60</td>
<td>110</td>
<td>215</td>
<td>1.3</td>
<td>2.6</td>
<td>4.6</td>
<td>2</td>
</tr>
<tr>
<td>Â</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>70</td>
<td>105</td>
<td>210</td>
<td>1.4</td>
<td>2.7</td>
<td>4.7</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>80</td>
<td>115</td>
<td>220</td>
<td>1.5</td>
<td>2.8</td>
<td>4.8</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>90</td>
<td>120</td>
<td>225</td>
<td>1.6</td>
<td>3.0</td>
<td>4.9</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>100</td>
<td>125</td>
<td>230</td>
<td>1.7</td>
<td>2.9</td>
<td>5.0</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>140</td>
<td>135</td>
<td>235</td>
<td>1.8</td>
<td>3.1</td>
<td>5.1</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>120</td>
<td>135</td>
<td>240</td>
<td>1.9</td>
<td>3.2</td>
<td>5.2</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>65</td>
<td>145</td>
<td>250</td>
<td>2.1</td>
<td>3.4</td>
<td>5.4</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>75</td>
<td>150</td>
<td>270</td>
<td>2.2</td>
<td>3.5</td>
<td>5.5</td>
<td>3</td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>85</td>
<td>155</td>
<td>280</td>
<td>2.3</td>
<td>3.6</td>
<td>5.6</td>
<td>4</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>95</td>
<td>160</td>
<td>290</td>
<td>2.4</td>
<td>3.7</td>
<td>5.7</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>105</td>
<td>165</td>
<td>305</td>
<td>2.5</td>
<td>3.8</td>
<td>5.8</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>115</td>
<td>170</td>
<td>310</td>
<td>2.6</td>
<td>3.9</td>
<td>5.9</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>67</td>
<td>175</td>
<td>320</td>
<td>2.2</td>
<td>4.4</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>O</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>87</td>
<td>180</td>
<td>330</td>
<td>2.1</td>
<td>4.1</td>
<td>4.6</td>
<td>1</td>
</tr>
<tr>
<td>Ó</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>92</td>
<td>185</td>
<td>340</td>
<td>2</td>
<td>4.2</td>
<td>4.7</td>
<td>2</td>
</tr>
<tr>
<td>Chữ cái</td>
<td>Chữ cái thứ nhất</td>
<td>Chữ cái thứ hai (KN)</td>
<td>Chữ cái thứ ba (KN)</td>
<td>Chữ cái đầu của ho</td>
<td>Liên kết</td>
<td>Loại mặt cắt</td>
<td>Mat cắt II</td>
<td>Mat cắt III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td>P1</td>
<td>P2 (KN)</td>
<td>P3 (KN)</td>
<td>L1 (m)</td>
<td>L2 (m)</td>
<td>L3 (m)</td>
<td>Mạt cắt I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>104</td>
<td>190</td>
<td>350</td>
<td>1.9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>110</td>
<td>195</td>
<td>360</td>
<td>1.8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>90</td>
<td>200</td>
<td>275</td>
<td>1.7</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>60</td>
<td>157</td>
<td>370</td>
<td>1.6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>50</td>
<td>168</td>
<td>380</td>
<td>1.5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>120</td>
<td>420</td>
<td>400</td>
<td>1.3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>144</td>
<td>134</td>
<td>250</td>
<td>2.3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>100</td>
<td>186</td>
<td>290</td>
<td>2.4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>107</td>
<td>167</td>
<td>280</td>
<td>2.5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>9</td>
<td>14</td>
<td>14</td>
<td>174</td>
<td>187</td>
<td>220</td>
<td>2.6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

136
MẶT CẮT LOẠI I - VẬT LIỆU GỖ

1. \[\frac{a}{b} = \frac{1}{2} \]

2. \[\frac{a}{b} = \frac{2}{3} \]

3. \[a \]

4. \[a = R \]
 \[J_y = J_z = 0,546 a^2 \]

5. \[a = 0,765 R \]
 \[J_y = J_z = 0,767 R^4 \]

6. \[J_y = J_z = \pi R^4/4 \]
BÀI GIẢI MÀU BÀI TẬP LỚN SỐ 4

Tên bài: Tính ổn định cấu thành chịu nén.
Số liệu để bài:

A- Mạt cắt loại I

- Vật liệu gốm.
- \(P = 100 \text{ KN} \);
- \(L = 5 \text{ m} \);
- \(\mu = 0,7 \);
- \([\sigma] = 1 \text{ KN/cm}^2 \);
- \(E = 10^8 \text{ KN/cm}^2 \);
- Công thức Lasinski:
 \[\sigma_a = a - \lambda b; Vôt a = 4000 \text{ N/cm}^2; \]
 \[b = 20,3 \text{ N/cm}^2. \]

Bài giải

1. Chọn kích thước mạt cắt ngang từ điều kiện ổn định

 \[F \geq \frac{P}{\phi [\sigma]} \quad (1) \]

 Vì \(F \) và \(\phi [\sigma] \) chưa biết nên ta dùng phương pháp đắn đành để giải.

 + Số bối chọn \(\phi [\sigma] = 0,5 \)

 Từ (1) ta có

 \[F \geq \frac{P}{0,5[\sigma]} = \frac{100 \times 10^1}{0,5 \times 10^3} = 200 \text{ cm}^2; \]

 \[F = b, a = 2a, a = 2b = 200; a = 10 \text{ cm}^2; \]

 \[J_{a1} = \frac{b \times a^3}{12}. \]

I/42
\[i_{\text{max}} = \sqrt{\frac{i_{\text{min}}}{F}} = \frac{a^2}{\sqrt{12}} \]

\[\lambda_{\text{max}} = \frac{\mu_l}{i_{\text{min}}} = \frac{0.7500}{\sqrt{100}} = 0.75 \]

Với \(\lambda = 121 \), tra bảng có
\[\phi = 0.215 - \frac{0.215 - 0.183}{10} = 0.212 \]

Chọn lệnh 2 (Vì \(\phi_1 \) khác \(\phi_0 \))

Chọn \(\phi = \frac{\phi_2 + \phi_0}{2} = \frac{0.5 + 0.212}{2} = 0.356 \)

Từ (1)
\[F \geq \frac{100 \times 10^3}{0.356 \times 1000} = 281 \text{ cm}^2 \]
\[2a^2 = 281 \text{ cm}^2; a^2 = 140.5 \text{ cm}^2 \]
\[l_{\text{max}} = \frac{F}{i_{\text{min}}} = \frac{a^2}{\sqrt{12}} = \frac{140.5}{\sqrt{12}} \]
\[\lambda_{\text{max}} = \frac{\mu_l}{l_{\text{max}}} = \frac{0.7500}{\sqrt{140.5}} = 0.702 \]

Với \(\lambda = 102 \), tra bảng có
\[\phi = 0.310 - \frac{0.310 - 0.256}{10} = 0.3 \]

Chọn lệnh 3
\[\phi = \frac{\phi_1 + \phi_2}{2} = \frac{0.356 + 0.3}{2} = 0.328 \]

Từ (1) có
\[F \geq \frac{100 \times 10^3}{0.328 \times 1000} = 305 \text{ cm}^2 \]
\[a^2 = 152.5 \text{ cm}^2 \]

143
\[
\lambda_{\text{max}} = \frac{\mu l}{i_{\text{max}}} = \frac{0.7500}{\sqrt{152.5}} \sqrt{12} = 98; \\
\]

Với \(\lambda = 98 \), tra bảng có

\[
\phi_1 = 0.310 + 2 \cdot \frac{0.385 - 0.31}{10} = 0.325; \\
\phi'_1 = \phi_1; \\
\]

Vậy ta chọn \(F \geq 305 \text{ cm}^2; a \geq 12.35 \text{ cm}^2; \)

Kết luận: Ta chọn \(a = 12.5 \text{ cm}; \)
\(b = 25 \text{ cm}; F = 312.5 \text{ cm}^2; \)

2. Xác định lực tối hạn

Từ kết quả tính ở trên có \(\lambda = 98 \); Với đó có \(\lambda_p = 75 \); \(\lambda > \lambda_p \), nên ta dùng công thức Olce:

\[
\sigma_a = \frac{nE}{\lambda_{\text{max}}} = \frac{(3.14) \cdot 10^6}{98^2} = 1027 \text{ N/cm}^2; \\
\]

Lực tối hạn: \(P_a = \sigma_a F = 1027 \cdot 312.5 = 320937.5 \text{ N = 321 KN}; \)

Hệ số an toàn ổn định: \(n_{at} = \frac{\sigma_a}{\phi[p]} = \frac{1027}{0.328 \cdot 1000} = 3.13 \)
- Vật liệu: Thép CTS;
- P = 600 KN;
- L = 5 m;
- μ = 0,7;
- $\Delta = 10$ cm;
- $E = 2.10^5$ N/cm²;
- $[\sigma] = 16000$ KN/cm²;
- Cường độ là sau: $\alpha = 1,2\beta, \alpha = 31000$ N/cm²
- b = 114 N/cm²;

1. Chọn kích thước mặt cắt tại điểm kết ổn định

$$F = \frac{P}{[\sigma]}$$

(1)

Việc và không biệt nỗi ta dùng phương pháp dùng định để giải

+ So sánh chọn $\varphi = 0,5$

Từ (1) ta có

$$F = \frac{P}{[\sigma]} = \frac{600 \times 10^3}{0,5 \times 16000} = 75 \text{ cm}^2$$

Diện tích của mặt của chất C là

$$F_1 = \frac{F}{2} = 37,5 \text{ cm}^2$$

Tra bảng thép định hình với $F_1 = 35,2 \text{ cm}^2; F = 70,4 \text{ cm}^2$

- Xác định J_{out}:

$$J_{out} = 2 \left[J_{out} + \left(\frac{\Delta}{2} + z_a \right)^2 \right] F_1 = 2 \times 262 + (0,5 + 2,4)^2 \times 35,2 = 1145 \text{ cm}^4$$

$J_{out} = 21,1 = 8320 \text{ cm}^4$

$J_{max} = J_{out} = 1145 \text{ cm}^4$

$$0,32 = t \text{ do } 0,75 \text{ tọa độ tại điểm ổn định}$$
\[I_{\text{max}} = \sqrt{\frac{J_{\text{mm}}}{F}} = \sqrt{\frac{1145}{79.4}} = 4.03 \text{ cm}^2 \]

\[\lambda = \frac{\mu d}{I_{\text{max}}} = \frac{0.75 \times 1000}{4.03} = 0.87 \]

Trong bảng ta có:

\[\varphi = 0.59 + \frac{0.75 - 0.6}{10} = 0.703 \]

1. **Chọn dân 2 (Vi \(\varphi \), khác xa \(\varphi_0 \))**

Chọn \(\varphi = \frac{\varphi_0 + \varphi_1}{2} = \frac{0.5 + 0.703}{2} = 0.604 \)

Từ (1)

\[F \geq \frac{600 \times 10^4}{0.604 \times 16000} = 62.1 \text{ cm}^2 \]

\(F_1 = 31.05 \text{ cm}^2 \)

Trong bảng thép ta chọn thép chính C ở hiệu 24, nơ \(F_1 = 30.5 \text{ cm}^2 \)

Vì \(F = 61.2 \text{ cm}^2 \)

Có:

\[I_{\text{max}} = 1 = \left[\frac{J_{\text{mm}}}{F} \right] \left(\frac{A + z_d}{2} \right)^{\frac{1}{2}} \]

\[I_{\text{max}} = \frac{J_{\text{mm}}}{F} = \left[\frac{938}{61.2} \right] = 3.91 \text{ cm}^2 \]

\[\lambda = \frac{\mu d}{I_{\text{max}}} = \frac{0.75 \times 1000}{3.91} = 0.87 \]

Trong bảng ta có:

\[\varphi = 0.69 \]

2. **Chọn dân 3 (Vi \(\varphi \), khác xa \(\varphi_0 \))**

Chọn \(\varphi = \frac{\varphi_0 + \varphi_1}{2} = \frac{0.604 + 0.69}{2} = 0.647 \)

Từ (1)

\[F \geq \frac{600 \times 10^4}{0.647 \times 16000} = 58 \text{ cm}^2 ; F_1 = 22 \text{ cm}^2 \]

Trong bảng thép ta được sợi hiệu C 22° có \(F_1 = 28.6 \text{ cm}^2 \)

146
Nhu vậy $F = 57,2 \text{ cm}^2$;

$$I_{an} = \frac{J_1}{2} \left[J_1 + \left(\frac{\Delta + \sigma_0}{2} \right)^2 \right] = 876,5 \text{ cm}^4;$$

$$i_{max} = \frac{J_{an}}{F} = \frac{876,5}{57,2} = 15,1 \text{ cm};$$

$$\lambda = \frac{\mu l}{i_{an}} = \frac{0,7500}{3,915} = 0,191;$$

Tra bảng có:

$$\phi_i = 0,69 + 4 \cdot \frac{0,75 - 0,69}{10} = 0,696;$$

So sánh ta chọn theo lần 3; có nghĩa là $\lambda = 89$; số hiệu 22x.

2. Xác định lực tối hạn:

Thành vật liệu thép CT1, có $\lambda_0 = 100$;

VI $\lambda < \lambda_0$, nên dùng công thức Isainxki

- $\sigma_{an} = a \lambda b = 31000 - 114, 89 = 20845 \text{ N/cm}^2$;

- $P_u = \sigma_{an} \cdot F = 20845 \cdot 57,2 = 1192849 \text{ N} = 1193 \text{ KN}$;

- Hệ số an toàn ổn định:

$$n = \frac{P_u}{\sigma_{an} \cdot \varphi [\sigma]} = \frac{20845}{0,6471 \cdot 16000} = 2;$$
Số liệu:
\[P = 2050 \text{ KN; } \]
\[L = 5 \text{ m; } \]
\[[\sigma] = 16 \text{ KN/cm}^2; \]
\[E = 2 \times 10^5 \text{ KN/cm}^2; \]

Công thức Iasinxki:
\[\sigma_{II} = a - \lambda b; \text{ Với } a = 31 \text{ KN/cm}^2; \]
\[b = 0.114 \text{ KN/cm}^2. \]

1. Chọn kịch thượng mặt cấu (Ta có 3 mặt cắt chịu I)
\[J_x = J_{x1} + J_{x2} + J_{x3}; \]
\[J_y = J_{y1} + J_{y2} + J_{y3}; \]

Theo hệ trục của báo sô liệu thiết và các hình vẽ bài toán có:
\[J_x = J_{x1} + 2J_{x2} + 2b^2 F(b-0.5d+0.5h); \]
\[J_y = J_{y2} + 2J_{y1}; \]
\[J_{11} = \frac{1}{3}(J_{x1} + 2J_{x2} + 2b); \]
\[J_{22} = \frac{1}{3}(J_{y1} + 2J_{y2}); \]

Điều kiện ổn định
\[F \geq \frac{P}{3q_0}; \]

Chọn I=1
\[\phi = 0.5; \]
\[F = 2050 \times \frac{1}{30.5.76} = 85.42 \text{ cm}^2; \]

Tra bảng thép ta được I N=45; cò F= 83 cm²;
Ta có các số liệu: \(i_{x2} = 18,2 \text{ cm}; \ i_{z2} = 3,12 \text{ cm}; \ d = 0,86 \text{ cm}; \ h = 45 \text{ cm}; \)

Thay các số liệu tính được:

\(i_x = 21,62 \text{ cm}; \)
\(i_y = 14,97 \text{ cm}; \)
\(\lambda = \frac{ul}{i_{nm}} = \frac{0,7500}{14,97} = 23,18; \)

Tra bảng có
\(\varphi_1 = 0,962; \)

+ Chọn lập 2
\[\varphi_2 = \frac{\varphi_s + \varphi_1}{2} = \frac{0,5 + 0,962}{2} = 0,731; \]
\[F = \frac{2050}{3,0731} = 58,42 \text{ cm}^2; \]

Tra bảng thép được I N^o 36; cởi F = 61,9 cm^2; \(i_x = 14,7 \text{ cm}; \ i_z = 2,89 \text{ cm}; \)
\[i_{y2} = \frac{1}{3}(2,89^2 + 2,14,7^2) \]
\(i_y = 12,12 \text{ cm}; \)

\[\lambda = \frac{ul}{i_{nm}} = \frac{0,7500}{12,12} = 28,87; \]

Tra bảng có \(\varphi_2 = 0,958; \)

+ Chọn lập 3
\[\varphi_3 = \frac{\varphi_s + \varphi_2}{2} = \frac{3,731 + 0,958}{2} = 0,844; \]
\[F = \frac{2050}{3,844} = 50,57 \text{ cm}^2; \]

Tra bảng thép được I N^o 30a; cởi F=49,9 cm^2; \(i_x = 12,5 \text{ cm}; \ i_z = 2,95 \text{ cm}; \)
\[i_{y3} = \frac{1}{3}(2,95^2 + 2,12,5^2) \]
\(i_y = 10,35 \text{ cm}; \)

\[\lambda = \frac{ul}{i_{nm}} = \frac{0,7500}{10,35} = 33,8; \]

149
Tra bằng có $\phi_2 = 0,938$;
+ Chọn lớp 4

$$\phi_4 = \frac{\phi_1 + \phi_2}{2} = \frac{0,844 + 0,938}{2} = 0,891;$$

$$F \geq \frac{2050}{3,0,891.16} = 47,93 \text{ cm}^2;$$

Tra bằng dày $1/3$ số; có $F = 46,5 \text{ cm}^2$; $i_{x} = 12,3 \text{ cm}$; $i_{y} = 2,69 \text{ cm}$;

$$i_{x} = 10,16 \text{ cm};$$

$$\lambda = \frac{0,7500 	imes 34,44}{10,16} = 7,39;$$

Cứu cung ia chọn thép chỉ 1 số hiệu $30; F = 46,5 \text{ cm}^2$;
+ Kiểm tra điều kiện bên:

$$\sigma = \frac{P}{3F} \leq \phi(\varepsilon);$$

$$\frac{2050}{3,465} = 14,695 \text{ KN/cm}^2 < 0,938.16 = 15,008 \text{ KN/cm}^2;$$

Như vậy đã đủ.

2. Tính lực tối hạn và hệ số an toàn ổn định:
+ Tính lực tối hạn $\lambda_0 = 100; \lambda = 34,44$

Vi $\lambda < \lambda_0$, nên dùng công thức Iasinskii

$$\sigma_n = \sigma_{nb} \frac{F}{A} = 21 - 0,114 \times 34,44 = 27,07 \text{ KN/cm}^2;$$

$$\sigma_{nb} = \sigma_{nb}, F = 27,07 \times 46,5 = 3776,3 \text{ KN};$$

+ Hệ số an toàn ổn định:

$$n_{so} = \frac{\sigma_{nb}}{\sigma_n} = \frac{27,07}{0,938.16} = 13;$$

Lớp
TINH HỆ SIÊU TÍNH

Yêu cầu nội dung:

1. Về biểu độ nội lực (lực đ rc, lực cắt, nô men uốn).

2. Chọn mặt cắt (số hiệu thép chỗ I hoặc đ khớp JI); Đối với thành công chọn mặt cắt có tiết diện chữ nhật). Chứng suất cho phép:

\[\sigma = 16 \text{ KN/cm}^2. \]

Chú ý: Khi chọn mặt cắt trên thành công, eot thành có độ cong bé và áp dụng các công thức tính toán như đói và thành thẳng.

3. Kiểm tra điều kiện bên tại các điểm nguy biến khi có kế tờ ảnh hưởng của lực cắt và lực đ rc.

4. Tính chuyển vi tại điểm C theo phương của lực tác dụng tại điểm đ có.

Số liệu theo bảng 5.
<table>
<thead>
<tr>
<th>Số độ</th>
<th>P1 (KN)</th>
<th>P2 (KN)</th>
<th>M (KNm)</th>
<th>q (KN/m)</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>a1</th>
<th>a2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>25</td>
<td>2</td>
<td>2,5</td>
<td>2</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>A 2</td>
<td>45</td>
<td>25</td>
<td>10</td>
<td>20</td>
<td>2,5</td>
<td>3</td>
<td>1,5</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>A 3</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>15</td>
<td>2</td>
<td>2,5</td>
<td>1,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>B 4</td>
<td>45</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>1,5</td>
<td>2</td>
<td>2,5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C 5</td>
<td>40</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>2</td>
<td>2,5</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D 6</td>
<td>35</td>
<td>15</td>
<td>40</td>
<td>25</td>
<td>1,5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D 7</td>
<td>30</td>
<td>20</td>
<td>40</td>
<td>15</td>
<td>2</td>
<td>2,5</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>E 8</td>
<td>25</td>
<td>15</td>
<td>45</td>
<td>20</td>
<td>1,5</td>
<td>2</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>E 9</td>
<td>20</td>
<td>15</td>
<td>40</td>
<td>25</td>
<td>2</td>
<td>2,5</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>G 10</td>
<td>15</td>
<td>15</td>
<td>50</td>
<td>15</td>
<td>2,5</td>
<td>3</td>
<td>1,5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>H 11</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>20</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1,5</td>
<td>1</td>
</tr>
<tr>
<td>I 12</td>
<td>20</td>
<td>15</td>
<td>50</td>
<td>25</td>
<td>1,5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>J 13</td>
<td>25</td>
<td>20</td>
<td>40</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>L 14</td>
<td>30</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>2,5</td>
<td>3</td>
<td>2</td>
<td>1,5</td>
<td>1</td>
</tr>
<tr>
<td>M 15</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>2</td>
<td>2,5</td>
<td>2</td>
<td>1,5</td>
<td>1</td>
</tr>
<tr>
<td>N 16</td>
<td>40</td>
<td>35</td>
<td>20</td>
<td>20</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>O 17</td>
<td>45</td>
<td>40</td>
<td>15</td>
<td>15</td>
<td>2,5</td>
<td>2,5</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Ô 18</td>
<td>50</td>
<td>40</td>
<td>15</td>
<td>20</td>
<td>1,5</td>
<td>2</td>
<td>1,5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ô 19</td>
<td>50</td>
<td>40</td>
<td>15</td>
<td>25</td>
<td>2,5</td>
<td>3</td>
<td>1,5</td>
<td>0,5</td>
<td>1,5</td>
</tr>
<tr>
<td>P 20</td>
<td>40</td>
<td>35</td>
<td>20</td>
<td>15</td>
<td>3</td>
<td>3</td>
<td>1,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Chữ cãi cải thọ nhất</td>
<td>Chữ cãi thọ hai</td>
<td>Chữ cãi thọ ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tải trọng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Số độ</td>
<td>P1 (KN)</td>
<td>P2 (KN)</td>
<td>M (KNm)</td>
<td>P1 (KN)</td>
<td>P2 (KN)</td>
<td>M (KNm)</td>
<td>L1</td>
<td>L2</td>
<td>L3</td>
</tr>
<tr>
<td>Q 11</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>2.5</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 12</td>
<td>20</td>
<td>15</td>
<td>25</td>
<td>2</td>
<td>2.5</td>
<td>1.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 13</td>
<td>25</td>
<td>15</td>
<td>40</td>
<td>1.5</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 14</td>
<td>50</td>
<td>30</td>
<td>35</td>
<td>2</td>
<td>2.5</td>
<td>1.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U 5</td>
<td>55</td>
<td>40</td>
<td>20</td>
<td>2.5</td>
<td>3</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U 6</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 7</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X 8</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>2</td>
<td>2.5</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y 9</td>
<td>50</td>
<td>35</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Diagram]
Tên bài: Tính hệ siêng tính.

Số liệu đề bài:
- \(M = 20 \text{ KN}m; P_1 = 50 \text{ KN}; P_2 = 30 \text{ KN}; q = 10 \text{ KN/m}; \)
- \(L_1 = 2,5 \text{ m}; L_2 = 2 \text{ m}; L_3 = 2 \text{ m}; a_1 = 0,5; a_2 = 0,5; \)

Bài giải

1. Vẽ biểu đồ lực
 Đây là bài toán điểm lúng, số bậc siêng tính \(n = 2 \) (bằng số góc trung gian).

a- Chọn hệ cơ bài
h. Phương trình buông mòn đến các giao:

\[1, M_{120} + 2(l_1 + l_{10}) M_{11} + l_{11} M_{12} + \left(\frac{\Omega_{110} b_{10}}{l_1} + \frac{\Omega_{111} b_{11}}{l_{11}} \right) = 0; \]

Trong đó:

\[l_1 \text{ và } l_{11} \text{ là độ dày của đoạn thứ } n \text{ và thứ } n+1; \]
\[\Omega_{110} \text{ và } \Omega_{111} \text{ là điện tích của biểu đồ mòn men đến do tài trọng gây nên trên đoạn thứ } n \text{ và thứ } n+1; \]
\[a_{10}, b_{10} \text{ là khoảng cách từ trọng tâm của điện tích đồ đến các giao thứ } n \text{ và } n+1; \]

+ Tính các giá trị:

\[M_{110_0} \text{ đọn 2: } \frac{Q_{110}}{8} + \frac{P_{110}}{4} = \frac{10.27}{8} + \frac{50.2}{4} = 30 \text{ KNm}; \]

\[M_{111_0} \text{ đọn 3: } \frac{P_{111}}{4} = \frac{30.2}{4} = 7.5 \text{ KNm}; \]

\[\Omega_2 = \frac{2}{3} \cdot 30.1 = 40; \quad a_1 = b_1 = 1 \text{ m (Vi hình đối xứng);} \]

\[\Omega_2 = \frac{1}{2} \cdot 15.1 = 15; \quad a_0 = b_0 = 1 \text{ m (Vi hình đối xứng);} \]

c. Ta có hệ phương trình chính tắc:

\[1, M_{11} + 2(l_1 + l_{10}) M_{11} + l_{11} M_{12} + \left(\frac{\Omega_{110} b_{10}}{l_1} + \frac{\Omega_{111} b_{11}}{l_{11}} \right) = 0; \]

\[1, M_{120} + 2(l_1 + l_{10}) M_{120} + l_{11} M_{12} + \left(\frac{\Omega_{110} b_{10}}{l_1} + \frac{\Omega_{111} b_{11}}{l_{11}} \right) = 0; \]

\[2.5 M_{11} + 9 M_{12} + 2 M_{112} + \frac{40}{2} = 0; \]

\[2 M_{11} + 8 M_{12} + 2 M_{112} + \frac{40}{2} = 0; \]

Trong đó: \[M_{0} = 20 \text{ KNm; } M_{3} = 0; \]
\[9 M_{1} + 2 M_{2} + 170 = 0; \]
\[2 M_{1} + 8 M_{2} + 165 = 0; \]

Giải ta được:

160
d. Tính phân lực tại các g错误i tức

\[R_s = R_s^0 + \frac{M_s - M_s^0}{l_s} + \frac{M_{s1} - M_{s1}^0}{l_{s1}}; \]

Trong đó:

\[R_s^0 = R_s^0 + R_{s1}^0; \]

\[R_s = \frac{M_s - M_s^0}{2,5} = \frac{-15,15 - 20}{2,5} = -14,06 \text{ KN}; \]

\[R_s = \frac{M_{s1} - M_{s1}^0}{l_{s1}} = \frac{20 + 15,15}{2} = \frac{35,15}{2,5} = 14,06 \text{ KN}; \]

\[R_1 = \frac{q_1 \cdot P_1}{2} + \frac{20 + 15,15}{2} = \frac{49,06}{2} = 24,53 \text{ KN}; \]

\[q_1 = \frac{q_1^1 \cdot P_1}{2} + \frac{20 + 15,15}{2} = \frac{49,06}{2} = 24,53 \text{ KN}; \]

\[R_2 = \frac{q_1^2 \cdot P_1}{2} + \frac{16,84 \cdot 10,2}{2} = \frac{58,415}{2} = 29,2075 \text{ KN}; \]

\[R_3 = \frac{R_s \cdot M_s}{l_s} + \frac{15 + \frac{-16,84}{2}}{2} = 6,58 \text{ KN}; \]

e. Biểu đồ nơi lực
2. Chọn kích thước mặt cắt: Chọn số hiệu thép chữ I, biết \([\sigma] = 16 \text{ KN/cm}^2 \).
 a. So sánh chọn theo từng süt phần:
 - Mô men uốn cực đại \(M_{\text{max}} = 20 \text{ KNm} \);
 - Tính điều kiện bên

\[
\frac{M_{\text{max}}}{W_s} \leq [\sigma] \quad \Rightarrow \quad W_s \geq \frac{M_{\text{max}}}{[\sigma]} = \frac{2000}{16} = 125 \text{ cm}^3
\]
h = 18 cm; b = 10,2 cm; d = 0,5 cm; t = 0,82 cm; F = 25,4 cm²;
W_1 = 159 cm³; J_1 = 1430 cm⁴; S = 89,8 cm³; t = 7,5 cm;
b. Kiểm tra bên khí có kết đon lực cắt:
+ Kiểm tra phần tối tro cung thanh Fury:
- Mật thiết kiện tra: Gọi chiến hóa phía trái hay gọi tiêu ba về phá trái (vi tài các mặt cắt này có Q_{max});
- Diểm kiểm tra: điểm nằm trên đường thẳng bô của mặt cắt.
- Công thức kiểm tra:
 \[\tau_{max} = \frac{Q_{max}S}{J_1d} = 35,89 - \frac{3}{3} \text{ KN/cm}^2; \]
- Sử dụng thuyết bền “Ưng suất tiếp lớn nhất” có [σ] = \[\frac{[\sigma]}{2} \] = 8 KN/cm²;
- \[\tau_{max} < [\tau] \]; Phân ở ảnh toàn;
+ Kiểm tra phần tối tro cung “uy ng suốt phía:
- Mật phá kiểm tra: Tại độ thứ ba về phá trái (vi có mỏ mơn ướm và lực cắt cương lớn);
- Điểm kiểm tra: Điểm K tiếp giáp giữa lòng và đế của mặt cắt thứ I;
- Công thức kiểm tra: Dung thuyết bền 3 (Thuyết bền um ng suốt tiếp lớn nhất)
 \[\sigma_{eb} = \sqrt{\sigma_{eb}^2 + 4\tau_{eb}^2} [\sigma]; \]
 \[\sigma_{eb} = \frac{M}{J_{eb}} \left(\begin{array}{c} h \\ 2 \end{array} \right) = \frac{1684}{1430} \left(\begin{array}{c} 18 \\ 2 \end{array} \right) = 9,63 \text{ KN/cm}^2; \]
 \[\tau_{eb} = \frac{Q_{eb}S_{eb}}{L_{eb}b^2}; \]
 \[S_{eb} = S_e - (b - \frac{h}{2}) \frac{18 - 0,82}{2} = 89,8 - 10,2 = 80,6 \text{ cm}^³; \]
 \[b_{eb} = 0,5; J_{eb} = 1430 \text{ cm}^⁴; \]
 \[\tau_{eb} = \frac{Q_{eb}S_{eb}}{L_{eb}b^2} = \frac{35,19,75}{1430,5} = 0,966 \text{ KN/cm}^²; \]
σ_{m} = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2}} = \sqrt{9.63^{2} + 4.066^{2}} = 10.946 \text{ ksi} = 75.48 \text{ mm}^{2} = \sigma_{y}

Phân tích an toàn:

+ Kết luận: Chọn thép chữ I số hiệu [I]

3. Tình chuyển vị tại điểm đạt lực P_{x}, cho phép thằng động

+ So đồ đạt lực đơn vị

+ Chọn hệ cơ bàn cho so đồ lực đơn vị

+ Phương trình chỉnh tắc

\[l \cdot M_{x} + 20(l + 20) + l \cdot M_{y} = 0 \]

\[\frac{M_{x} - M_{y}}{l} = \frac{20(l + 20)}{l} \]

(1)

(2)
$l_1M_1 + 2(l_1 + l_2)M_2 + l_3M_3 + 6\left(\frac{l_2}{l_1} + \frac{l_3}{l_2}\right) = 0;\\ \text{M}_c = \text{M}_b = 0; \text{ Ta có:}\\ 2(l_1 + l_2)M_1 + l_3M_3 + 6\left(\frac{l_2}{l_1}\right) = 0;\\ l_1M_1 + 2(l_1 + l_2)M_2 + 6\left(\frac{l_2}{l_2}\right) = 0;\\ 9M_1^2 + 2M_2^2 + 6\left(\frac{0.5l_1}{4}\right) = 0;\ 9M_1^2 + 2M_2^2 + 0.75 = 0\\ 2M_1^2 + 4M_2^2 + 6\left(\frac{0.5l_1}{4}\right) = 0;\ 2M_1^2 + 4M_2^2 + 0.75 = 0\\ \text{M}_f = 0.047 \text{ KNm;}\\ \text{M}_K = -3.164 \text{ KNm;}\\ \text{Ta có thể liều biểu đồ mô men lực đơn vị ở trên (vi sai số rất bé);}\\ + \text{Tính chuyển vị tại điểm c (bởi ảnh hưởng của lực c)}\\ f_c = \sum_{i=1}^{k} M_{ci} \cdot \Delta x = \sum_{i=1}^{k} \Omega_i \cdot F_i;\\ f_c = \frac{1}{E_{I_x}} \left[2.2 \left(\frac{9l_1}{8} + \frac{P_2l_3}{4}\right) 5.5 \right] = \frac{125}{E_{I_x}} = 4.3 \times 10^{-4} \text{ cm;}\\ \text{Vậy chuyển vị của điểm c theo phương thẳng đứng là} 4.3 \times 10^{-4} \text{ cm;
PHỤ LỤC I
HUONG DẪN THI NGHIỆM CO HỌC

Bài I. Xác định đặc trưng cơ học của vật liệu bằng thí nghiệm kéo

I. Mục đích thí nghiệm
Xác định các đặc trưng cơ bản của thép và gang.

II. Máy thí nghiệm
Thí nghiệm làm trên máy van nén YMM - 5; DLY-60. Cấu tạo và cách sử dụng máy nay xem hướng dẫn ở thái liệu máy.

III. Mẫu thí nghiệm
Hình dạng và mẫu của thí nghiệm được chọn theo tiêu chuẩn nhà nước (xem hình 1) Mật chất ngang của mẫu là hình ống có đường kính d₀ = 10 mm, chiều dài thí nghiệm của mẫu là l½ bằng 10 l½ đường kính đối với mẫu dài, và 5 lần đường kính đối với mẫu ngắn.

Hình I

Bộ đồ được đúc dưới dạng của đoạn L₀ sau khi mẫu đứt, đối với mẫu thép, ta chia đoạn L₀ ra thành N không đều nhau (thường chia làm 10 không) và đánh dấu các khoảng chia đó.

IV. Cơ sở lý thuyết của thí nghiệm
Các đặc trưng cơ học của vật liệu bao gồm các số liệu biểu thị tính bền và tính đeo của vật liệu. Các số liệu đặc trưng cho tính bền của vật liệu (bao gồm giới hạn tỷ lệ, giới hạn đàn hồi, giới hạn mòn, ứng suất tắc mẫu đứt) được xác định bằng các công thức sau đây:

166
1. Giới hạn lý thuyết:

\[\sigma_s = \frac{P_i}{F_0}; \quad (N/cm^2, \text{KN/m}^2, \ldots) \]

Trong đó: \(P_i \): Lực trong ứng với giới hạn lý thuyết của vật liệu, tính bằng N, KN,

\(F_0 \): Diện tích mặt cắt ngang của mẫu trước khi thử nghiệm, tính bằng, \(\text{Cm}^2, \text{m}^2 \ldots \)

2. Giới hạn chảy:

\[\sigma_a = \frac{F_{ab}}{F_a}; \quad (N/Cm^2, \text{KN/m}^2 \ldots) \]

Trong đó: \(F_{ab} \): Lực tương ứng với giới hạn chảy của vật liệu, tính bằng N, KN,

3. Giới hạn bền:

\[\sigma_b = \frac{P_b}{F_a}; \quad (N/cm^2, \text{KN/m}^2 \ldots) \]

Trong đó: \(P_b \): Lực tương ứng với giới hạn bền của vật liệu tính bằng N, KN, \ldots

4. Üng suất lực mẫu đột sáct định bằng hai gia trị:

Giá trị Ứng suất thực nhất giới là giá trị ứng suất ước, xác định bởi các tỷ số giữa lực lực mẫu đột \(P_a \) với diện tích ban đầu của mẫu \(F_a \), tức là:

\[\sigma_s = \frac{P_a}{F_a}; \quad (N/cm^2, \text{KN/cm}^2 \ldots) \]

Giá trị thiết hai giới là giá trị ứng suất thực, xác định tỷ số giữa lực lực mẫu đột \(P_a \) với diện tích của mẫu tại chỗ đốt (chỗ thật) \(F_a \) tức là:

\[\sigma_s^{(th)} = \frac{P_a}{F_a}; \quad (N/cm^2, \text{KN/cm}^2 \ldots) \]

Các số liệu đặc trưng cho tính bền của vật liệu (bao gồm độ dẫn đại tương đối tính theo phần trăm \(\delta \), độ đột tương đối tính theo phần trăm \(\Psi \), \ldots) được xác định bằng công thức sau đây:

1. Độ dẫn đại tương đối \(\delta \% \):

\[\delta = \frac{L_1 - L_2}{L_0} \times 100\% \]

Trong đó: \(L_0 \): Chieur dài ban đầu phát thử nghiệm của mẫu (mm)

\(L_1 \): Chieur dài thử nghiệm của mẫu sau khi mẫu đột được ghép lại (mm).

Cách tính \(L_1 \) xem tương dẫn ở mục sau.

167
2. Đặt thừa tương đối \(\psi \% \)

\[
\psi = \frac{F_{1} - F_{0}}{F_{0}} \times 100\%
\]

Trong đó: \(F_{1} \) - Điện tích mặt cắt agang của mẫu trước lực thí nghiệm

\(F_{0} \) - Điện tích mặt cắt agang của mẫu tại chỗ đầu

V. Trình tự thí nghiệm

A. Chuẩn bị thí nghiệm: Siêu viễn viễn ở siêu viễn viễn thí nghiệm mẫu và đánh chủ do.

Thực hiện cần có độ chính xác 0,01 mm, thực hiện có độ chính xác 1 mm. Sau đó tiến hành:

1. Do kích thước van đầu \(L_{0} \) và do đường kính của mẫu. Lúc đó đường kính ta được thực tế có độ chính xác 0,01 mm, do ở 3 vị trí khác nhau trên chiều dài của mẫu, tại mỗi vị trí ta đo theo hai phương vuông góc với nhau rồi lấy giá trị trung bình. Đường kính đó sẽ là giá trị trung bình giữa các kết quả đo ở 3 vị trí. Chiều dài thí nghiệm \(L_{0} \) do bằng thực tế, hoặc thực tế có độ chính xác.

2. Đeo ổn định hỗn bến của vật liệu để chống băng lực; kiểm tra bộ phần vệ đế thí.

4. Đặt máy vào nguyên chế độ máy; điều chỉnh cho hai đầu của mẫu nằm đúng giữa ngửa kẻ và hằng đẳng; lập giấy về vào mực, dịch mục vào bắt về, đạt bắt về tỷ lệ len giáy; hoặc do, ve bằng böl để P.1000 (xem tài liệu may).

B. Tiến hành thí nghiệm

Giải các ngâm kẻ chất mẫu cho máy chạy, quán sát trên bảng lực thấy kim chạy được khoảng một số vạch (chừng tổ mẫu đã được kẻ cái) thì không phải giữ nguyên kẻ nữa. Tiếp tục cho máy chạy và quan sát quá trình thí nghiệm, khi lại trật các lực tương ứng với giới hạn chạy và giới hạn bền; sau thì nghiệm trên máy DLY-60, thì các số liệu do sẽ được bao gồm của máy với các FILE có đủ. BUF (xem tài liệu phần mềm của máy).

O giải đoạn đầu, độ ổn định của mẫu tương đối ổn định cũng với độ tương của lực kéo. Để giải đoạn chảy kim chỉ lực dừng yên tại chỗ hoặc dao động xung quanh một giá trị cố định, trong lúc mẫu vẫn tiếp tục bị kéo. Lực này quan sát độ thí quay, ta thấy đường biểu diễn chuyển từ dạng nghiệm tri với trục của rôlô hành động đẳng phương góc với trục của rôlô, hoặc tạo thành đường dích trực.
Ví trí thấp nhất của kim chỉ lục khi dao động hoặc vị trí dừng lại của kim chỉ lục tương ứng với giới hạn chạy Pₙ.

Sa giai đoạn chạy, vật liệu trước vào giai đoạn cùng có, kim chỉ lục quay hữu dụng tốc độ liên tục. Đến một vị trí nào đó kim chỉ lục lại rơi từ từ trở về. Trên mẫu xuất hiện chỗ thật. Chỗ thật hình thành ngay cùng ở lưu tốc độ kim và vi tốc tốc quy về, từ một mức nhất định thì mẫu đứt.

Trị số lớn nhất của lục kế Pₙ tương ứng với giới hạn bên của vật liệu. Chỉ tại trị số lục này và lục khi mẫu bị kéo đứt (Pₘ).

Sa khi mẫu đứt lấy mẫu ra khỏi ngòi kep, quan sát bề mặt chỗ mẫu đứt và hình dạng mẫu. Lấy phần giây về đỏ thì khối ra khối mờ, hoắc cho in đỏ thì bảng may in.

Bơi vì khi sở sẵn chiều dài thì nghiêm sau khi đứt của hai mẫu như như cùng một vật liệu, một mẫu ở chính giữa, một mẫu đứt ở gần đầu mẫu, ta dễ dàng nhận thấy rằng chiều dài thì nghiêm của mẫu sau bởi kém chiều dài thì nghiêm của mẫu trước. Do đó để xác định chiều dài thì nghiêm của mẫu sau khi mẫu đứt, ta chia làm hai trường hợp sau đây: Nếu chỗ đứt nằm trong đoạn giữa của chiều dài thì nghiêm (doan giữa là đoạn có hai mặt cách vị trí trung tâm của mẫu 1/3 chiều dài thì nghiêm) thì khoảng cách giữa hai vạch giống như khi mẫu đứt là trị số L₂.

Nếu chỗ đứt nằm ngoài đoạn đầu của chiều dài thì nghiêm, thì dễ khá thuận lợi của mẫu đứt do doan dài ta tương ứng đưa chỗ đứt về chính giữa mẫu và tính L₃ như hình sau:

Hình 2
Hình 3

Giá sử chordất ở gần chỏ đầu bên trái của mãu thì nghiêm, như trên hình 2, chiều dài của mãu được chia thành N khoảng. Từ vị trí đầu ta đi về phía trung tâm chiều dài thứ nghiêm (không tính khoảng chia giữa vị trí đầu), điểm đầu là “a”. Sau đó từ a ta đi về phía ngược lại một số khoảng chia bằng số cần lại từ a và phía đầu kia của mãu danh đầu là “b”. Lục độ chiều dài của mãu thứ nghiêm của mãu lực độ là L, được tính bằng tổng độ dài các đoạn ac và ab. Trong tổng số này chúng số khoảng chia dùng bằng N.

VI. Chinh Lý và tính toán các kết quả thứ nghiêm

Hoàn thành các hình về và tính toán cần thiết theo yêu cầu đã ghi trong quyển “báo cáo thứ nghiêm”.

Căn cứ vào công thực của mục III để tính các số liều tác dụng cho tình ben và tình đeo của vật liệu. Căn cứ ý lý ứng dụng với giải hạn lý lệ do trực tiếp trên biểu độ kéo, hoặc do các số liều trên các FILE của máy (xem tại lieu máy).

Cuối cùng tính sai số; khi xác định giải hạn ben bằng trực nghiêm theo quy tắc hướng dẫn ở quyển báo cáo thứ nghiêm và căn cứ vào giải trí sai số này để làm mòn kết quả thứ nghiêm, rửa xết kết quả thứ nghiêm và nơi nguyên nhân gây sai số.

Bài 2. Xác định các tác dụng cơ học của vật liệu bằng thứ nghiêm nên

1. Mục đích thứ nghiêm

170
Xác định các đặc trưng cơ bản của vật liệu khi chịu nén. So sánh kết quả thí nghiệm ngoài với các loại vật liệu khác nhau (thép, gang, gh...).

II. Máy thí nghiệm

Thí nghiệm tiến hành trên máy van nặng 60 tấn DLY-60; YMM-5

III. Mẫu thí nghiệm

Mẫu gang và thép: mẫu có hình dạng trụ tròn (hình 3). Đường kính d_{4} và chiều cao h_{5} của mẫu thỏa mãn điều kiện:

$$1 \leq \frac{h_{5}}{d_{4}} \leq 3$$

Điều kiện này là cần thiết, vì nếu mẫu cao quá để phát sinh hiện tượng nén lệch tâm và hiện tượng uốn dốc. Nếu mẫu thấp quá sẽ làm tăng ảnh hưởng của lực ma sát giữa bánh nén và bề mặt của mẫu đến kết quả thí nghiệm.

Mẫu gỗ: Các hình dạng khối lập phương cạnh 50 mm (hình 4). Đối với mỗi thí nghiệm ta lấy ít nhất 2 mẫu, một mẫu để nén dốc thở, một mẫu để nén ngang thở. Thí nghiệm nén dốc thở chỉ dùng cho sinh viên lớp thực học công trình, xây dựng.

IV. Cơ sở lý thuyết của thí nghiệm

Nghiên cứu tính chất của vật liệu khi nén bao gồm việc xác định giới hạn chia đối với vật liệu dẻo, giới hạn bền với vật liệu dẻo, theo đội đặc trưng phì hỏng của vật liệu khi nén và biểu đồ nén.

Giới hạn chia của vật liệu dẻo khi nén xác định bởi công thức:

171
\[\sigma_a = \frac{P_a}{F_0} , \quad (N/cm^2, KN/m^2) \]

Trong đó: \(P_a \): Lực tương ứng với giới hạn chảy khi nén (N, KN, ...)

\(F_0 \): Diện tích mặt cắt ngang của mẫu (cm^2, m^2)

Giới hạn bền lực xác định bởi công thức:

\[\sigma_a = \frac{P_a}{F_0} , \quad (N/cm^2, KN/m^2) \]

Trong đó: \(P_a \): Lực nén lớn nhất trong quá trình thí nghiệm (N, KN)

Khi thí nghiệm nén ngang thô, ngoài việc xác định giới hạn bền, còn cần xác định giới hạn tỷ lệ theo công thức:

\[\sigma_s = \frac{P_s}{F_0} , \quad (N/cm^2, KN/m^2) \]

Trong đó: \(P_s \): Lực tương ứng với giới hạn tỷ lệ (N, KN)

V. Trình tự thử nghiệm

A. Chuẩn bị thí nghiệm:

1. Đo kích thước bar đầu của mẫu bằng thước cặp đo chính xác 0,01mm

2. Chọn bằng lực thí nghiệm, chọn cơ cấu về độ thi; lập giấy về vào ruột. Điều chỉnh kim động họ do lực về vị trí “0”.

3. Đặt mẫu lên nền nện, phẳng điều chỉnh sao cho mẫu đạt chính tâm của bồn nén.

4. Chờ máy làm việc để đạt may nín gần sát bần nện trên, chủ ý theo dõi để khi mẫu gắn chấm bần nện trên thì tắt máy.

5. Đặt bút về tỷ lệ lên giấy về.Đến đây công tác chuẩn bị đã tiến hành xong, có thể bắt đầu làm thí nghiệm.

B. Tiến hành thí nghiệm

Trước tiến động van đầu về của máy, van từ từ van đầu lên xi lanh và bấm nút cho máy làm việc. Lực nayo từ từ quy được van đầu lên xi lanh để điều tiết van đầu lên xi lanh. Phải giữ điều chỉnh van đầu vững với chủ ý quan sát sự đi đồng của kim chỉ thị trên bäng lực, bao đảm cho kim quy đầu và chậm để phát hiện được giai đoạn chảy của vật liệu thí nghiệm.
Khi nén màu thẹp, lực nén càng lớn thì màu biến dạng càng nhiều, nhưng không bi pha vô. Vì thể đạt tới (70 + 80)% giá trị tối đa của bằng lực thì dừng thí nghiệm, và ghi bi giá trị lực đó.

Mẫu gang, lực bén nên sẽ không biến dạng thành hình tương tự. Lực lực nén đạt tới một giá trị nhất định, mẫu bị phá hổng đột ngột, và tên bẹ mặt mẫu xuất hiện những vết nứt nghiêm góc 45⁰ so với phương thẳng đứng (hình 5)

Biểu đồ nén có dạng như trên hình 6.

Từ góc toa độ biểu đồ cong theo một đường cong có góc rất hằng nghiêm gần sát với trục toa độ biểu thị lực nén, sau đó thay đổi đồ cong đột ngột và đi xuống.

[Diagram]

Hình 5

[Diagram]

Hình 6

 Hiến tương pha hổng đột ngột và giảm lực nhanh chóng mà chúng ta thấy trong quá trình nén mẫu gang trên đây là đặc trưng của vật liệu đơn.

173.
Mọi giá biến đổi theo sự xuất hiện thônh bìu của những số lớn. Nếu giá
kéo theo hình 8, các thônh bìu về các khe giới hạn các mẫu số không bị phân
mất và nằm lại với hình cong (hình 9).

Hình 7

Hình 8

Hình 9
Hình 10
Biểu đồ nên gõ ngang thơ có dạng như trên hình 10

Lực phả họng quy tắc đối với gek khi nền ngang thơ là lực nên mở xương

1/3 chiều cao bàn đau. Đo bên của cầu gek khi nền ngang thơ thấp hơn từ 8 + 10 lơn đến bên khi nên nọc thơ. Tình phụ thuộc của các tính chất cơ học cầu với lực đặt vào phương tác dụng của lực gọi là tính đi hướng. Lực sử dụng các kết câu và thiết bị bằng gõ chúng ta phải chọn sao cho phương của lực tác dụng đó theo thơ của gek, nghĩa là theo phương có độ bền tốt nhất.

VI. Chinh lý, tính toán các kết quả thí nghiệm

Đối với tất cả các màu, giới hạn đều tính theo công thức ở mục IV (riêng đối với màu thép chỉ tính theo giới hạn chảy). Đối với màu gang và màu gõ nên độ thơ, lực tương ứng với giới hạn bền lấy giới tri lực lớn nhất, còn đối với màu gõ nên ngang thơ thì lực tương ứng với giới hạn bền lấy giới tri lực như đã nói ở mục IV.

Đối với màu gõ nên ngang thơ, ngoại giới hạn bền còn phải xác định thêm giới hạn tỷ lệ. Lực tương ứng với giới hạn tỷ lệ là lực ứng với điểm cuối của đoạn đường thẳng bậc nhất trên biểu đồ nên.

Tất cả các số liệu biểu đồ nên, dạng phả họng của màu và các hiện tượng quan sát được trong quá trình thí nghiệm, còn ghi lại đây dưới quyền "Báo cáo thí nghiệm".
I. Mục đích thí nghiệm

Xác định mô đun đàn hồi của vật liệu bằng thí nghiệm kéo và kiểm nghiệm lại định luật Hooke trong trạng thái ứng suất đơn.

II. Máy thí nghiệm

Máy kéo van nâng YMM-5; P-5; P-0,5

Dung cụ đo biên dạng: Ten số mét điện trỏ hoặc ten số mét đơn.

III. Mẫu thí nghiệm

Hình dạng mặt cắt ngang của mẫu phụ thuộc vào dung cụ đo biên dạng. Ở đây ta dùng mẫu có mặt cắt ngang hình tròn hoặc hình chữ nhật.

IV- Cơ sở lý thuyết của thí nghiệm

Mô đun đàn hồi E của vật liệu được xác định trên cơ sở công thức của định luật Hooke đối với biên dạng đơn hàm:

\[\Delta L = \frac{P_L}{EL} \times \text{Tư độ đốt} \quad ; \quad E = \frac{P_L}{\Delta L} \times \text{(N/cm}^2, \text{KN/m}^2, \ldots) \]

Trong đó: P là lực kéo (N, KN)

L là chiều dài cơ sở trên độ tải hiện do độ giãn dài (đối với ten số mét đơn, chiều dài này bằng chiều dài của ten số mét)

F là Diện tích mặt cắt ngang của mẫu (cm², m²,

\[\Delta L \] là độ dài dài tương đối của chiều dài cơ sở.

V. Trình tự thí nghiệm

A. Chuẩn bị thí nghiệm

1. Đo kích thước mặt cắt ngang của mẫu, ghi lại chuẩn đo của dung cụ đo biên dạng; hết số kwêch dài hoặc giới thiệu mỗi khoảng chia trên dung cụ đo biên dạng.

2. Xác định lực kéo lớn nhất trong thí nghiệm để bao đâm vật liệu làm việc trong giới hạn đàn hồi, nghĩa là: \(\sigma_{\text{max}} = \frac{P_{\text{max}}}{A} \leq \sigma_e \)

Nếu chưa biết giới hạn độ lệ thì ta có thể lấy gần đúng theo giới hạn chảy: \(\sigma_e = \frac{\sigma_{\text{max}}}{1.2} \)

176
3. Cần cứ vào lực kéo lớn nhất để chọc bằng lực, điều chỉnh kim khí lực về vị trí "0".

4. Lắp mẫu thí nghiệm vào các ngăn kep của máy, kep đúng cụ độ biến dạng vào mẫu (nếu do bằng các tấm điện trở thì phải đắc các tấm điện trở vào mẫu tự trục). Để loại trừ ảnh hưởng do lực kéo không đúng tâm gây ra, ta phải mức đúng cụ độ biến dạng trên hai mặt độ đề xung của mẫu thí nghiệm (hình 11).

Hình 11

B. Tiến hành thí nghiệm:
Trước hết tác dụng lên mẫu một lực ban đầu Bảo (khoảng 100 - 200 KG) để cho các mẫu mẫu thí nghiệm được kep chặt và các cơ cấu của động cụ độ biến dạng làm việc bình thường đều ổn. Sau đó tăng lực từ thể nghiệm cấp A, bảo đảm cho ít nhất có 4-5 lần tăng lực, nhưng số lần tăng lực cũng không nên quá hạn mức sai số độ đạc trên các động cụ độ biến dạng.

Sau khi tăng lực đến giá trị lớn nhất, ta lại giảm lực về giá trị ban đầu Bảo. Kiểm tra hiệu số các số đạc trên các động cụ độ biến dạng, nếu các hiệu số này không đều phải tiến hành lại thí nghiệm.

VI. Chính lý và tính toán các kết quả thí nghiệm
Cần cứ vào số liệu có, ta tính trị số độ dán bán E như sau: $E = \frac{\Delta P L}{\Delta L a F}$
Độ dài của segment (N, KN)

P : diện tích (cm², m²)

\[\Delta L_b = \text{do đổi dài trong hệ tuyết độ cua chiều do (cm, m)} \]

\[\Delta L_b = \frac{\Delta L_b}{K} = \Delta a \]

Trong đó:
K là hệ số khuyếch đại của tensors'1

\[\alpha \text{ Là Giả trị mỗ khoảng chia trên ten so mét} \]

\[\Delta = \frac{1}{2} \left[\frac{\sum A + \sum B}{n} \right] \]

Ô dầy \(\Sigma A \) là tổng số các chiều số đo được trên ten so mét trái

\(\Sigma B \) là tổng số các chiều số đo được trên ten so mét phải

n là số lần tổng lực

Cụ thể tính toán sai số theo quy tắc hoàng dàn ở phần cuối của quyển "Bạc cáo thí nghiệm", và cân cự vào sai số do để làm trọng sai số trừ số mô dàn tinh được trong kết quả tính toán, nhân kết kết quả, nếu nguyên nhân sai số.

Về do thi biểu thị sự liên hệ giữa tổng suất và biên dạng P - \(\Delta L \), từ đó kiểm nghiệm lại định luận Húc.

Bài 4. Thị nghiệm xác định hệ số biến dạng ngang của vật liệu (he só \(\mu \))

I. Mục đích thí nghiệm:

Xác định hệ số biến dạng ngang của thép bằng thí nghiệm kéo.

II. Mây thí nghiệm và dụng cụ đo

Mây van năng YMM 5; P 5;

Dụng cụ đo biên dạng: ten so mét đơn hoặc ten so mét diện trò.

III. Mẫu thí nghiệm: Mẫu thí nghiệm có mặt cắt ngang là hình chữ nhật chiều dài, khoảng (4+5) lần chiều rộng (hình 12).

178
IV. Cơ sở lý thuyết của thí nghiệm

Nur chúng ta đã biết, khi mẫu bị kéo dọc trực tiếp diệt ngang của mẫu cơ lại. Ngược lại khi mẫu bị nén thì tiếp diệt ngang của mẫu bị dán ra.

Tỷ số giữa biễn dạng ngang tương đối e và biễn dạng dọc tương đối e, gọi là hệ số biến dạng ngang, hoặc hệ số poisson, ký hiệu là μ, và xác định bởi công thức:

$$\mu = \frac{e}{e}$$

V. Trình tự thí nghiệm

A. Chèn bì thí nghiệm:

1. Để do biến dạng dọc ta đan hai tâm diện trở I và I lên hai mặt đối diện của mẫu, tức cả hai tâm diện trở này phải song song với trực của mẫu.

2. Để do biến dạng ngang ta đan hai tâm diện trở II và II trên hai mặt đối diện của mẫu, tâm diện trở này phải vuông góc với trực của mẫu (hình 12)

Với cách bố trí các tâm diện trở như trên, biến dạng dọc của mẫu sẽ bằng trị số trung bình cộng của biến dạng do được trên hai tâm diện trở I và I. Nếu số dạng ten so mét đơn thì ta cùng mắc các ten so mètre ở các vị trí tương tự. Lức này phải chọn kích thước tiếp diệt ngang của mẫu sao cho số thể mắc ten so mètre theo phương vuông góc với trực dọc để đăng và số độc được chia xác.

179
2. - Do kích thước mẫu, lập mẫu vào máy.

B. Tính hằng thị nghiệm:

Sau lúc đã chuẩn bị xong ta tiến hành tăng lực từ từ thấp tăng cấp, đến giá trị lớn nhất (giá trị lực máy nhằm đảm bảo lực làm việc trong giới hạn dần hạn hồi được xác định như trong thiết nghiệm xác định mỏ độ ổn định hồi E). Sau mỗi lần tăng lực ta cần bằng máy do biên dạng tại mỗi điểm đó, và ghi lại số đo tương ứng trên mỗi máy do biên dạng. Để kết quả chính xác ta có thể lập lại ít nhất 2 lần quá trình thí nghiệm trên.

VI. Chỉnh lý và tính toàn các kết quả thí nghiệm

1. - Tính hiểu số các số đo tại mỗi điểm sau mỗi lần tăng lực, và tính trí số trung bình cộng các hiểu số đó.

2. - Tính trí số trung bình cộng của hiểu số các số đo trên các cấp điện trở I - I'; II - II'.

3. - Tính biên dạng đó và biên dạng ngân bằng cách nhận các hiểu số trung bình tương ứng ở trên với giá trị của mỗi khoảng chiếu của máy do biên dạng.

4. - Tính bậc số poisson.

5. - Nhận xét kết quả và đánh giá.

Bài 5. - Thị nghiệm xoắn các mẫu thép và gang

I. Mục đích thí nghiệm:

a. Xác định giới hạn chảy (đối với thép) và giới hạn bền độ đối với gang và thép khi bị xoăn.

b. Nghiệm cứu quá trình biên dạng và đặc tính phụ thuộc của vật liệu đó và vật liệu đơn

II. Máy thí nghiệm

Máy xoắn KM-25; KM-50

III. Mẫu thí nghiệm

Hình dạng và kích thước của mẫu thí nghiệm xoắn giống như thí nghiệm kéo.

180
IV. Các loại thủy cầu tự nhiên

Do đạc trong hồ bơi hoặc khi chìm xuống ta phải xác định giới hạn chay (nếu có) và giới hạn bơi, của chúng.

1. Giới hạn chay được tính theo công thức sau:

\[v_a = \frac{M_a}{W_p} \quad \text{hoặc} \quad \frac{v_a}{\sigma} = \frac{M_a}{W_p} \quad \text{N/cm}^2, \text{KN/m}^2, \ldots \]

Trong đó: \(M_a \) là giới trị cuối cùng mà không xô lét trong quá trình thí nghiệm

\(W_p \) là mô mô của chở xô lét của thiết bị

2. Giới hạn bơi được tính theo công thức:

\[v_a = \frac{M_a}{W_p} \quad \text{hoặc} \quad \frac{v_a}{\sigma} = \frac{M_a}{W_p} \quad \text{N/cm}^2, \text{KN/m}^2, \ldots \]

Trong đó: \(M_a \) là giới trị cuối cùng mà không xô lét trong quá trình thí nghiệm

\(W_p \) là mô mô của chở xô lét của thiết bị

Đối với thép: Lức cấu bị pha hằng lê ngựa tiếp có thể có điều phân bố đúc trên mặt cát ngang, nên giới trị bơi được tính theo công thức:

\[v_a = \frac{M_a}{W_p} \quad \text{hoặc} \quad \frac{v_a}{\sigma} = \frac{M_a}{W_p} \quad \text{N/cm}^2, \text{KN/m}^2, \ldots \]

Trong đó: \(M_a \) là giới trị cuối cùng mà không xô lét của cấu

\(W_p \) là mô mô của chở xô lét của thiết bị

V. Thử nghiệm thiết bị

A. Chuẩn bị thử nghiệm

1. Sinh viên nhận ở nhân viên thí nghiệm câu vấn và đúng cơ do: thiết bị, thiết lập

Do thiết bị của câu và thiết kếounding báo cáo cho thí nghiệm. Lực do đạc kết quả thơc đặc có do chấn xúc 0.01 mm, do ăp áp tri khác nhau trên chiếu dài của câu, tại mỗi vị trí ta do theo hai phương vị giới hạn giá trị triu mong. Đổng kết quả thí nghiệm được ở giới trị triu mong đỉnh cao kết quả do ở giá trị triu. Chế độ

\[
10 181
\]
đặt thì Lọ, đó bằng thước thẳng có độ chấn xác ở 1 mm, hoặc thước cặp. Dùng phân vách một đường thẳng dọc theo đường sinh của mấu, để quan sát quá trình bi xọa.

2. Cán ở vào đường kính của mấu và vật liệu chế tạo mấu để chọn bằng lực thi nghiệm. Đơn kim bị dòng ve sâu kim chỉ dòng. Xoay cơ cán dòng để ghi giống xem ve vị trí "0". Lập giáy ve vào ruột của bộ phân tư động ve đó thị xọa.

3. Cặp hai lọn một dò của mấu vào ngảm trên, dùng tay quay cho ngảm trên tiến gần gian phần dưới sao cho dò của mấu thi nghiệm nằm chính giữa ngảm. Cố định còn lắc dòng ngảm xét để xét chất ngảm với cả hai dò của mấu. Đặt bút về tỷ lệ giáy ve.

B. Tiến hành thí nghiệm:

VI. Chịnh lý gunakan các kết quả thí nghiệm.

Trong quan văn báo cáo thí nghiệm phải về số độ mevity mâu thi nghiệm có vị rotor các kích thước cần thiết. Ghi lại đầy đủ các số cơ mô men xoắn trong giai đoạn chạy, mommen xoắn lên hoạt, gốc xoắn và về lại đó thi xọa. Cần có vô số liệu để cơ, tiến hành tính toán theo công thức đã hướng dẫn ở mục IV.

Có điều chỉnh sai số khi xác định giới hạn bền bằng thực nghiệm, và cần có vào cả từ sai số này để làm trừ các kết quả đó được, nhận xét thí nghiệm, nên nguyên liệu sai số.
Bài 6: Thí nghiệm xác định mô đun đàn hồi khi trượt của vật liều

I. Mục đích thí nghiệm
Xác định mô đun đàn hồi khi trượt G của vật liều và kiểm nghiệm lại định luật Hyc.

II. Động cự và mẫu thí nghiệm

Hình 13

So đồ thí nghiệm như hình 13

Mẫu có mặt cắt ngang hình tròn đặc, một đầu ngấm chặt một đầu kia đặt trong vòng bi, vòng bi được ghép từng đôi cơ định. Ngày sát mặt bênh phải giữ được từ hàn thanh ngang số 1, ñ dazu từ đôi cửa thanh ngang này, tài vị trí cách xa trực của mẫu một đoạn l, đặt một miếng treo dùng để đặt các quả cân nhằm để tạo ra các mô men xoắn đối với trục. Tài vị trí A và B cách nhau một đoạn L trên mẫu ta ghép chặt hai thanh công nằm ngang 2. Tài vị trí cách trực mẫu một đoạn là a trên mỗi thành này ta đặt một chuyển vị kẹ.

Khi mẫu bị xoắn, các mặt cắt ngang của mẫu quay xung quanh trục mẫu so với vị trí nằm ngang ban đầu của chúng một góc ϕ_1 và ϕ_2 (hình 14). Các góc đó chính là góc xoắn tương đối của mặt cắt A và B so với mặt cắt tại ngắn.

Vi biến dạngโม nên ta có thể tính ϕ_1 và ϕ_2 theo công thức sau:

183
Trong đó Δ là chuyển vị thăng bằng của điểm đặt chuyển vị K. Góc xoắn tưởng đối giữa hai mặt cắt A và B sẽ là:

$$\varphi_{AB} = \varphi_A - \varphi_B$$

III. Cơ sở lý thuyết của thí nghiệm
Từ công thức xác định góc xoắn

$$\varphi = \frac{M_L}{GJ_r}$$

Trong đó:

M_L: Là mô men xoắn; L: Là chiều dài cơ sở trên đó ta do góc xoắn;
J_r: Là mô men quan tính độc cụt của tuyệt điểm đầu, tính bằng công thức: $J_r = \frac{md^4}{32}$;
G: Là mô dünk dẫn hoà khi trượt của vật liệu, ta tìm được công thức xác định mô dünk dẫn hoà như sau:

$$G = \frac{M_L}{\varphi^2}\left(\text{N/cm}^2, \text{KN/m}^3\right)$$

Thay vào công thức này các giá trị xác định bằng thực nghiệm, ta tìm được giá trị mô dünk dẫn hoà G.

IV. Trình tự thực nghiệm

1. Động lượng khối đầu chiều dài cơ sở L, và các khoảng cách a, m. Kiểm tra lại điểm đặt và các phương của chuyển vị K, an nhét thành ngữ 1 để biết chiều dài đặt chuyển vị K.
2. Đặt $1kg$ lên đế tạo quay cánh, ghi lại số đo bước dần trên chuyển vị K. Sau đó lăn lượng dốc cánh $1kg$ lên mức tỏe, khi tăng số quay cánh trên mức tỏe bằng 4 thì dừng thử nghiệm. Sau mỗi lần tăng lục phi ghi lại số đo trên các chuyển vị K.

V. Chỉnh lý tính toán các kết quả thí nghiệm
Sau khi tính được hiệu số các số đo trên mỗi chuyển vị K, ta tính hiệu số trung bình của các số đo đối trên từng chuyển vị K, ký hiệu lần lượt là ΔA_m, ΔB_m. Lực do
Sau khi tính được mô men xoắn gây ra độ lệch đúng tại mỗi trục m_i, gốc xoắn x_m mô men quán tính tác dụng tại E, họ xác định được mô đun ihn hồi G theo công thức ở mục 3.

Ta có thể so sánh trí số đó với trí uột G xác định bằng thực nghiệm trên đây, với trí số xác định bởi công thức lý thuyết:

$$G = \frac{E}{2(1+\mu)}$$

Trong đó các trí số E và μ là kết quả thực nghiệm của trục. Cuối cùng ta sẽ đọ trí xoắn $M_p - x$, từ đó kiểm nghiệm lại định luật lực xoắn.
Bài 7. Thí nghiệm xác định hệ số đại và đáp của vật liệu

I. Mục đích của thí nghiệm
Xác định các khả năng chống sét trong và đáp của vật liệu, và tính chất phá hỏng của vật liệu khi chịu tải trọng và đáp.

II. Mây thử nghiệm: Mây và đáp kiểu cong lạc JB-30 hoặc MK - 30A.

III. Mẫu thí nghiệm: Mẫu thí nghiệm được chọn theo tiêu chuẩn nhà nước vật liệu CTS. Hình dạng và kích thước như hình vẽ.

IV. Cơ sở lý thuyết của thí nghiệm
Thí nghiệm cho thấy rằng các tải chất có thể làm vật liệu chịu tải đúng của tải trọng và tải trọng dòng biêun không giảm như. Giơi hạn bền của vật liệu chịu tải đúng của tải trọng dòng biêun giảm xuống. Có những vật liệu dưới

![Diagram](image)

Hình 15
tài đúng của tải trọng biểu hiện tính độ rát tốt, nhưng dưới tài đúng của tải trọng dòng biêun biểu hiện tính chất như các vật liệu dòon. Đối với khi chọn vật liệu để chế tạo các chì tiét dưới tài đúng của tải trọng dòng, cần phải tiến hành thí nghiệm đặc biệt về tài trọng dòng gọi là thí nghiệm và đáp. Thí nghiệm và đáp thường là thí nghiệm và đáp vốn có mẫu như hình 15. Mục đích cấu tạo của rắn trên mẫu là để đặt vật liệu làm việc trong điều kiện năng nhẹ khi chịu và đáp. Kinh số làm giảm tiệt điện chỉa giữa đâm, có nghĩa là nâng cao ứng suất uốn trong phần vi tường đối ngạn trên chiều dài của mẫu. Lúc này mẫu như toàn bộ năng lượng tập trung vào một thế tích tương đối nhỏ của mẫu như, dòng thời gây nên những ứng suất động tương đối lớn. Ngoài ra độ mẫu bị khoét rạch điện tích mặc.Call hang của mẫu bị thay đổi đối với nên khi mẫu bị và đáp, độ rạch khống nhưng xuất hiện những ứng suất phụ thuộc về theo phương vuông
góc với trụ mấu (hình 16), nghĩa là tại vị trí này, hình xạ hiện trạng thái ứng suất khối và tất cả các ứng suất chính đều là ứng suất kếo. Các ứng suất này cần trở biến dạng đến của vật liệu.

Thì nghiệm và đáp anh xác định công dụng để phủ hồi mấu thứ chổ không xác định lực hay ứng suất phát sinh trong mấu khi mấu bị phủ hồi; vật liệu càng dễ thì công phủ hồi mấu càng lớn.

Hệ số dải của vật liệu khi và đáp là tỷ số giữa công dụng để phủ hồi mấu và diện tích mặt cắt ngang của mấu ở chổ bị phủ hồi.

![Hình 16](image)

\[a \frac{A}{F} \quad \text{Trong đó:} \quad a \quad \text{là hệ số dải tính bằng Nm/cm², KNm/cm²}

A \quad \text{là công dụng để phủ hồi mấu, tính bằng Nm, KNm, ...}

F \quad \text{là diện tích mặt cắt ngang của mấu ở chổ bị phủ hồi (cm²)}

Thì nghiệm và đáp tiến hành ở nhiều độ trong phòng, bởi vì ngoại hình dạng của mấu và tốc độ và đáp, nhất độ của mấu anh hưởng rất nhiều đến độ đáp và đáp. Khi điều độ thấp hệ số dải và đáp của vật liệu sẽ giảm xuống rất nhiều, gây nên sự phủ hồi lớn hơn của vật liệu của các kết cấu.

V. Trình tự thí nghiệm

1. Đo kích thước mặt cắt ngang của mấu tại chổ bị khoét răng.

2. Xác định năng lượng mặt mấu qua số liệu, ở chổ bị khoét và tác động vào động cơ không khí. Mỗi vị trí năng lượng tác động lên vị trí cần thiết khi thí nghiệm và chọn con...
lạc roi từ do. Độc sử đánh trên vách chia ứng với vị trí của kim chỉ thị bên trái ta sẽ xác định được phân młat mặt nắng lượng nơi trên.

3- Năng cao con lạc chí nghiệm lên vị trí đã làm ở trên. Dạt máu vào gọi tựa của máy sao cho ránh của máy cách đều hai gọi tựa. Quạt kim chỉ thị bên trái về vị trí "O".
Sau đó thì con lạc roi tự do, còn lạc sẽ đập vào mặt và phát họng mỗi. Năng lượng dứt trực cũ của con lạc sẽ được thể hiện qua kim chỉ thị bên trái, số gió trên vách cửa trống với vị trí ta kim chỉ thị này chính là năng lượng dứt trực của cụm lãi cứ con lạc sau khi con lạc đã bị phát họng mỗi.

Chú ý: Khi tiến hành các thao tác máy, phải tùy tủy đối diện hành theo các quy định sau đây:

a. Trước khi nâng con lạc lên, trừ một hoặc hai người có nhiệm vụ nâng con lạc, người người khác phải dừng ngoài vị hại phía song song với phần đó dòng cửa của.

b. Vì con lạc khá nặng, nên khi nâng phải rất chậm. Sau khi kiềm tra thấy con lạc được móc vững chắc vào móc trẻ rồi mới được đường say nâng.

c. Khi đạt mặt không được cụ người, cụ đầu vào hướng tốt của con lạc, không si được dùng châm vào máy. Sau khi đạt mặt xuống, người đối mặt cùng phải dừng song song với chiều của con lạc dao động, sau đó mới được phép cho con lạc rơi.

VII. Chỉnh lý và tiến toàn kết quả thí nghiệm

1- Viết tên máy và vẻ số đó máy

2- Ghi lại các đặc trung của máy thí nghiệm: vật liệu thí nghiệm hình dạng và kích thước.

3- Triển diễn tích mặt cát năng ở chỗ khóa ránh của mâu.

4- Ghi lại công đề phát{{{hồng mỗi và tính hệ số dài và dập theo công thức:

\[a = \frac{A}{F} \]

Trong đó: \[A = A_1 - (A_2 + A_3); \]

\[A_1 \] là năng lượng dứt trực của con lạc trước khi và dập, \[A_2 \] là năng lượng dứt trực của con lạc sau khi và dập, \[A_3 \] là năng lượng mặt đất mà sàn và các yếu tố khác, A là công phát họng mỗi.

5- Tính sai số trong việc xác định hệ số dài và dập bằng cách nghiệm theo quy tắc lượng đâm ở phần cuối quyển "Báo cáo thí nghiệm", và căn cứ vào giá trị của sai số này để làm trên kết quả thu được; nhận xét thí nghiệm.
1. Mục đích thí nghiệm

1- Nghiệm cấu các đặc trưng của ứng suất phân bố trên mặt cắt ngang cây suy giảm (mat cắt m - n trên hinh 17) của một tấm thép chịu kéo.

2- Xác định hệ số tập trung ứng suất bằng thực nghiệm

II. Mây thí nghiệm và dụng cụ do

- Máy van nâng YMM - 5; P-5.
- Dùng cụ do biên dạng: ten so mét kiểm co khi hoặc ten so mét kiểu diện trợ.

III. Mẫu thí nghiệm

Mẫu thí nghiệm là một tấm thép có tiết diện là chữ nhật chiều rộng là b, bê dày là t, ở cạnh giữa có một lỗ tròn đường kính là d (hình 17)

IV. Cơ sỡ lý thuyết của thí nghiệm

Ứng suất tập trung phát sinh tại những nơi có sự thay đổi đột ngột về kích thước của mặt cắt ngang. Vì dự khi kéo một tấm thép có khoét lỗ tròn ở tâm (hình 17), ứng suất tập trung phát sinh ở mép lỗ, càng xa lỗ ứng suất càng giảm, ứng suất phân bố trên mặt cắt ngang nay theo quy luật như trên hình vẽ.

Hình 17
Kể qua của việc nghiên cứu bằng lý thuyết và thực nghiệm cho hay rằng: sự tăng ứng suất ở khu vực gần mốc lở như trên chỉ có thể có tính chất cục bộ, cho nên gọi là sự tập trung ứng suất.

Xét mặt cắt ngang cách xa mặt cắt ngang m - m. Ứng suất phân trên mặt cắt ngang này xác định theo công thức:

$$\sigma_0 = \frac{P}{F}$$

Trong đó: F là diện tích mặt cắt mặt cắt ngang không bị sụy giảm. Thì nghiệm cho thấy rằng, ứng suất lớn nhất trên mặt cắt ngang bị sụy giảm σ_{min} lớn hơn ứng suất σ_0 rất nhiều.

Vi trang thái ứng suất tại phần từ A, C là trang thái ứng suất đơn, nên ta có thể tìm được giải trị của ứng suất thông qua biện dẫn đại tương đối ở dạng công thức $\sigma = Ec$.

Trang thái ứng suất của phần từ B thuộc tám hợp, nhưng với độ chính xác vừa đủ, ta cùng có thể coi trang thái ứng suất ở đây là trang thái ứng suất đơn như trang thái ứng suất phần từ A và C.

Mục đích tập trung ứng suất được đánh giá bằng hệ số tập trung ứng suất α, trị số của nó bằng:

$$\alpha = \frac{\sigma_{min}}{\sigma_0}$$

Trong đó: σ_{min} là trị số ứng suất ở mốc lở;

$$\sigma_0$$ là trị số ứng suất phân trung bình, xác định theo công thức:

$$\sigma_0 = \frac{P}{(b - d)l}$$

Các kích thước b, d, l xem hình 17

V. Trình tự thí nghiệm:

1. Đo các kích thước cần mầu.
2. Mắc ten số mệt vào các vị trí A, B, C

Để xác định quy luật phân bố biến dạng và ứng suất trên thiết diện này. Đồng thời chỉ ra gia cung mặc thể nên mệt vào các vị trí D và D' trên thiết diện cách xa thiết diện bị sụy giảm để xác định ứng suất biến dạng tại thiết diện, và so sánh với các biến dạng tại các điểm trên thiết diện bị sụy giảm.

3. Tăng lực trên thiết số bằng đai P_0 (125 KG) để khảo các sai số cần thiết, ghi lại số đục ban đầu của các ten số mệt.

190
4. Tăng lực từ đầu tri số P_{mín} (P_{mín} = 300K0) phái lại các số đoc tương ứng trên các ten số mét.

Lâm lai thí nghiệm trên ít nhất 3 lần và lấy trí số trung bình của các kết quả.

VI. Chỉnh lý và tính toán các kết quả thí nghiệm.
1. Tính số giá của các số đoc và tính trí số trung bình của các số gia tương ứng với điểm đỗ, vị trí đồi với điểm A, trí số trung bình của số A là:

\[\Delta A = \frac{\sum \Delta A_i}{n}; \]

Trong đó:
\[\Delta A_i = A_{i+1} - A_{i}; \]
\[A_{1} \text{ là số đoc tương ứng với lực}; \]
\[A_{n} \text{ là số đoc tương ứng với lực cuối cùng (P_{mín})}; \]
\[n \text{ là số lần thí nghiệm}. \]

2. Tính biên độ của mỗi đồi theo công thức: \(e = K\Delta A \)

Trong đó:
\[K = \frac{1}{\alpha}; \]
\(\alpha \) là hệ số phóng đại của ten số mét (ở đây \(K = 10^{7} \)).

3. Tính đờm suất tại các điểm theo công thức:
\[\sigma = E\varepsilon \]

4. Về biểu đồ phân bố đờm suất trên các mặt của ngang nhìn và nhìn.

5. Xác định hệ số tập trung đờm suất.

191
Bài 9. Xác định ứng suất phán cực dán chịu ứng suất thuận tuỷ

1. Mục đích thí nghiệm
 1. Ngành cửu ứng suất phán trên mặt cắt ngang dán dán chịu ứng suất thuận tuỷ.
 2. Kiểm tra lại công thức tính ứng suất phán từ một điểm trên tiết diện ngang của dán dán chịu ứng suất ngang phẳng

II. Mẫu thí nghiệm và dụng cụ đo
 - Máy van nâng YMM- 5; P-5
 - Ten so met dien tru hoặc ten so met don

III. Mẫu và cách bố trí thí nghiệm

So đó bố trí thí nghiệm như hình 18. Mẫu thí nghiệm là thanh thép có tiết diện hình chữ nhật. Lực P thông qua góy tủa A và B tác dụng lên mẫu. Với so độ chịu lực như trên, phần mẫu nằm trong đoạn AB chịu tác dụng của mô men .rotate, không có lực cắt, nên cách khac, mẫu nay chịu ứng suất thuận tuỷ.

![Hình 18](image)

Tại các diện 11° 22° 33° trên một mặt cắt ngang dán dán chịu ứng suất thuận tuỷ ta gán các ten so met dien tru (sau dùng ten so met don thì ta chỉ gán được ở các vị trí 1 và 1'.

192
IV. Cơ sở lý thuyết của thí nghiệm

Nếu ta đã biết trang thái ứng suất tại một điểm bất kỳ trong đệm chịu ứng dạng phẳng thuận tựa là trang thái ứng suất đơn, do đó sự tương quan giữa các ứng suất và các biến dạng được biểu thị bởi công thức:

\[\sigma_i = E_i \]

Nếu vậy, nên độ được biến dạng \(t \), tại một điểm ta có thể xác định được trị số của ứng suất phẳng tại điểm đó.

Mặt khác, theo lý thuyết, ứng suất phẳng tại một điểm trên mặt cắt ngang cuộn đệm chịu ứng dạng phẳng thuận tựa được tính theo công thức:

\[\sigma = \frac{M_y}{I_y} \]

Nếu biết được trị số của mô men uốn \(M_y \), mô men quan tính đôi với trục x (I_x) và điểm khởi đầu từ điểm khoác sát đến đường trung hoà Y, ta có thể xác định ứng suất phẳng tại điểm đó. So sánh trị số ứng suất phẳng tìm được bằng thức nghiệm, ta có thể kiểm nghiệm lại công thức lý thuyết.

V. Trình tự thí nghiệm
1. Đo và ghi lại kích thước của mặt cắt ngang và chiều dài của mô thò nghiệm.
2. Mắc ten số mẻ đơn vào các vị trí như hình vẽ (nếu dùng ten số mẻ điện trở thì phải đảm bảo điểm đo lên trục) do khoảng cách từ đường trung hoà tới các vị trí của ten số mẻ.
3. Tường lạc theo từng cấp với số gia không đổi \(\Delta P \), ghi lại số đo trên các số mét sau mỗi lần tăng lạc và tính các số gia tương ứng.

Cô thể lần lại thí nghiệm trên ít nhất 3 lần, kết quả thí nghiệm sẽ là tỷ số trung bình kết quả các lần thí nghiệm.

VI. Chỉnh lý và tính toán các kết quả thí nghiệm
1. Tính số gia trung bình tại tất cả các điểm do \(\Delta_{m} \)
2. Tính biến dạng tại các điểm do

\[\varepsilon = \Delta_{m} K \]

Trong đó:

\[K = \frac{1}{a} \]

\(a \) là hệ số phóng đại của ten số mét (\(a = 10^{-3} \))
3. Tính ứng suất pháp tại điểm do theo công thức:
\[\sigma = Ec \]

4. Tính ứng suất pháp tại các điểm do theo công thức lý thuyết:
\[\sigma = \frac{M_x}{I_y} \]

5. Cẩn cẩn vào các giá trị ứng suất pháp xác định được bằng thực nghiệm và lý thuyết, về biểu đồ ứng suất pháp trên kết quả và so sánh các kết quả (tính theo phần trăm), nhận xét thử nghiệm và nếu nguyên nhân sai số:

Bài 10. Xác định độ vồng và góc xoay của đệm chịu trọng ngang phương

I. Mục đích thử nghiệm
1. Xác định độ vồng và góc xoay của đệm chịu trọng ngang phương bằng thực nghiệm
2. So sánh kết quả tính được bằng thực nghiệm với kết quả tính được bằng lý thuyết, từ đó kiểm nghiệm lại công thức lý thuyết.

II. Mẫu thí nghiệm và bộ trí thí nghiệm
So đồ bộ trí thí nghiệm như trên hình về (hình 19)

Ta cần đo độ vồng tại các điểm C, B và góc xoay tại mặt cắt ngang A. Độ vồng tại B và C do trực tiếp bằng chuyển vị kết. Góc xoay tại mặt cắt ngang A tính được thông qua độ dịch chuyển KK của điểm K (vi biến dạng nhỏ nên ta có thể bỏ qua chuyển vị đúng của điểm K, coi như K chỉ chuyển đối đến K' theo phương ngang).
Hình 19

III. Cơ sở lý thuyết của thí nghiệm

Với sơ đồ bố trí như hình và các trụ ta có thể xác định độ vòm tại các điểm A, B, C và góc xoay tại mặt cắt ngang A bằng phương pháp. Một khác theo lý thuyết ta có thể xác định trí số độ vòm và góc xoay bằng cách sau:

Góc xoay tại A:

\[\theta_A = \frac{PL}{a} \]

Đọ vòm tại B:

\[f_B = \frac{PL}{16EJ} \]

Đọ vòm tại C:

\[f_C = \frac{PL}{48EJ} \]

Ngoài ra ta có:

\[\theta_n = \theta_A \]

IV. Trình tự thí nghiệm

1. Đo kích thước mặt cắt ngang của đàm và khoảng cách c, a, chiều dài L của nhịp đàm.
2. Đặt mô quả cân vào chính giữa nhịp, đặt chuyển vị kế thật vòng góc với mặt đếm theo bài theo hai phương và dùng vị trí đó.

3. Đặt vào địa điểm một quả dọn 1 KG, đọc số đọc bốn đá trên các chuyển vị kế. Sau đó tăng lực theo đó giá $\Delta P = 1$ KG đến $P_{max} = 4$ KG, rồi lại lần lượt giảm lực theo đó giảm $\Delta P = 1$ KG đến trị số khác đầu tiên (1KG). Cứ mỗi lần tăng lực hoặc giảm lực đều phải ghi lại các số đọc được trên các chuyển vị kế và во quan "Biếu cáo thí nghiệm".

V. Chỉnh lý và tính toán các kết quả thí nghiệm.

1. Tính số giá ứng với mỗi lần tăng lực, sau đó tính số giá trung bình của các số giá đó trên từng chuyển vị kế Δm.

2. Tính chuyển vị tại các diểm đó theo công thức: $\Delta = \Delta m / K$.

Tổng số K trị số mỗi chia trên chuyển vị kế.

Chuyển vị kế tại C và B chính là độ vòng của các điểm đó, còn góc xoay tại mặt cầu A thì được xác định qua chuyển vị tại điểm K theo công thức ở mục II.

3. Cần có vào công thức mục III sa xác định được độ vòng và góc xoay ở các vị trí trên bằng lý thuyết.

4. So sánh kết quả thực được bằng lý thuyết và bằng thực nghiệm (tính ra phần trăm), từ đó kiểm tra lại công thức lý thuyết. Nhận xét và một nguyên nhân sai số.

Bài II. Xác định ứng suất khí khe lệch tâm

1. Mạch dịch thí nghiệm

1.1 Xác định bằng thực nghiệm quy luật phân bố của ứng suất phẳng trên mặt cắt ngang của thành chịu lệch tâm.

2. So sánh kết quả tìm được bằng lý thuyết với kết quả tìm được bằng thực nghiệm, từ đó kiểm nghiệm lại công thức lý thuyết.

II. Mây thí nghiệm và dụng cụ

- Máy YMM - 5; P-5;
- Ten - so- mét kiểu cuối.

196
II. Mẫu và cách bố trí thí nghiệm:

Vi trí mẫu thí nghiệm và vi trí đặt lực được trình bày như trên hình 20.

Hình 20

Trên cùng một mặt cắt ngang ta gán tensomètre vào các vị trí 1, 2 ở hai bên mép mẫu. Trí số trung bình của biên dạng do được tại điểm 3 cho ta biên dạng của các điểm samen trên trục mẫu.

III. Cơ sở lý thuyết của thí nghiệm

Trong kẹo và sên lêch tâm, trang thái ứng suất tại mỗi điểm bất kỳ là trang thái ứng suất đơn, nên định luật Hooke có dạng:

\[\sigma = Ec \]

Để đo nên bằng thực nghiệm, ta đo được biên dạng \(e \) và ta có thể xác định được trị số của ứng suất \(\sigma \).

Mất khác theo lý thuyết thì số của ứng suất phải trên mặt cắt ngang của thân chiều kẹo (nên) lêch tâm được xác định theo công thức:

\[\sigma = \frac{P}{F} \left(1 + \frac{e}{e_1} \right) \]

Trong đó:

- \(P \): là độ lệch mặt cắt ngang của mẫu.
- \(F \): là diện tích mặt cắt ngang của mẫu.
- \(e \): là khoảng cách lệch tâm.
- \(e_1 \): là biên cắt của mức mặt cắt ngang với trục x.
- \(y \): là khoảng cách từ trục y đến điểm xác định tổng suất.

IV. Thí nghiệm:

T11 197
1. Do kích thước mặt cắt ngang của mẫu tại vị trí giữa mẫu và do kholoang cách lịch tâm e.

2. Mặc ten - số - mêt vào các vị trí 1,2,3.

3. Tăng lệ đề p = 125KG, tốc và ghi lại số độ ban đầu trên các ten số met, sau đó với số giá lệ dP = 125KG ta lăn lướt tăng lệ đề tri số p = 500KG. Sau mỗi lần tăng lệ đề ghi lại số độ ban đầu trên ten số met. Làm lại thí nghiệm trên 3 lần để kiểm tra lại kết quả và lấy tri số trung bình của các lần đo.

V. Chinh lý và tính toàn các kết quả thí nghiệm

1. Tính số gía trung bình của số lần thí nghiệm tại tất cả các tiêm do δe.

2. Tính biến động tại tất cả các điều kiện do:

\[\sigma = \delta \sqrt{\frac{K}{n}} \]

Trong đó:

\[K = \frac{1}{\alpha} \]

\[\alpha \] là hệ số phồng dại của ten số met (ở đây K = 10²)

3. Tính Ước suất tại điều kiện do theo công thức \[\sigma = \frac{E}{c} \]

4. Tính Ước suất tại các điều kiện theo công thức lý thuyết nói ở mục III.

5. So sánh kết quả tính ước ước thực nghiệm và tính được bằng công thức lý thuyết (tính ra phần trăm), từ đó kiểm nghiệm lại công thức lý thuyết. Nhận xét và nếu nguyên nhân sai số.

Bài 12. Xác định độ vồng của đâm khi ướn xiên

I. Mục đích thí nghiệm

1. Xác định bằng thực nghiệm độ vồng của đâm khi ướn xiên.

2. Kiểm nghiệm lại công thức tính độ vồng tại một điều kiện của đâm khi ướn xiên.

II. Mẫu và cách bố trí thí nghiệm

Mẫu thí nghiệm là một thanh bằng thép gom hai phân, một phần có mặt cắt ngang là hình tròn, phần còn lại có mặt cắt ngang là hình chữ nhật (hin 21). Phần mặt cắt ngang hình tròn được kep chặt trong một ngắn hình ống (hin 22) nên ta có thể đặt đâm ở bất kỳ vị trí nào so với phương của tài trong. Phần mặt cắt ngang hình chữ nhật là phần
đám thị nghiệm. Trong thí nghiệm này, góc nghiêng của đạm so với phương của tài trong là $\phi = 30^\circ$. Đầu tự do có đất móc đất treo qua cân (hình 22).

Để đo độ vồng theo phương X (f_x) và phương Y (f_y) ta đặt một chuyền việc theo phương x và một chuyền việc theo phương y.

III. Cơ sở lý thuyết của thí nghiệm

Với số độ bộc tri như hình 22, ta có thể xác định trí số các độ vồng f_x, f_y bằng thức

Mặt khác, theo lý thuyết độ vồng theo phương x và theo phương y được xác định theo công thức:

$$f_x = \frac{PL_x}{3EI_x} = \frac{PL_x \sin \phi}{3EI_x}$$

Hình 21

$$f_y = \frac{PL_y}{3EI_y} = \frac{PL_y \cos \phi}{3EI_y}$$

Hình 22

Độ vồng toàn phần f sẽ là:

$$f = \sqrt{f_x^2 + f_y^2}$$

Góc hợp bởi trực y với phương của độ vồng toàn phần xác định theo công thức:

$$\tan \alpha = \frac{f_y}{f_x}$$

IV. Trình tự thí nghiệm

1. Đổ kích thước mặt đất ngang của mái và vị trí nghiệm đến vị trí độ độ vồng.

2. Lăn luôn đất các quả cân (trong trường mỗi quả là 1 KG) lên móc treo, cứ mỗi lần đất một quả, phải đọc và ghi lại độ độ các số đo trên các chuyền việc.

T12 199
5. Xác định các độ vòng f_1, f_2 độ vồng toàn phần f và góc α theo các công thức lý thuyết.

4. So sánh kết quả thử nghiệm bằng máy thử nghiệm và bằng thử nghiệm (tính phần trăm) từ độ kiểm nghiệm lại công thức lý thuyết. Nhận xét thí nghiệm và nguyên nhân sai số.

Hai 13: Xác định lực tối hạn khi thành bị nén doc trực.

I. Mục đích thí nghiệm

1. Giám sát quá trình mài ổn định của thành bị nén doc trực và xác định bằng thử nghiệm độ lớn của lực tối hạn.

2. Kiểm nghiệm lại công thư xác định lực tối hạn bằng lý thuyết.

II. Máy thí nghiệm

Tiến hành thí nghiệm này trên một thiết bị đơn giản tự chế tạo có sơ đồ như trên hình 24.

III. Mẫu thí nghiệm: Mẫu thí nghiệm là một thành mỏng dài 150 cm, có tiết diện hình chữ nhật, vật liệu bằng thép CT3. Hình dạng và kích thước của tiết diện ngang như hình vẽ (hình 23).

IV. Cơ sở lý thuyết của thí nghiệm

Hình 23

Hình 24

Nghĩa chỉ sử dụng tấm mài khá căng lầm việc không những chỉ vị vật liệu bị mất tích bền mà còn bị thành mài khá nặng-duty với hình dạng ban đầu của nó, hay nói cách khác, thành bị mất ổn định. Bối vây đề cho kết cấu lầm việc bị thất thường cần đảm bảo cho các chỉ tiêu của nó có đa độ bền, độ ổn định và đủ tiêu dùng.
của ngôi lực cùng chỉ có dạng căn bằng nhất định phù hợp với đặc trưng bên dạng cơ bản gây ra bởi nên đúng tương, chỉ cho phép thành có đủ khả năng biện dạng độc trực và thành có thể bị uốn cong trong mặt phẳng có độ cung nhất định. Như vậy, dưới tác dụng của lực này, sự cân bằng của thành ở dạng thẳng chuyển từ trạng thái ổn định sang trạng thái không ổn định. Trạng xã của lực đó gây lục rối hạn. Sự uốn của thành trong trường hợp này gây lục rối ổn, nghĩa là sự uốn gây ra bởi tác dụng của lực độc trực. Công thức xác định lực đó hàm như ví dụ của 1744 việt du để:

\[P_a = \frac{n^nE_{fem}}{L_0} \]

Công thức này chỉ dùng khi vật liệu nằm trong giới hạn sự lệ, nghĩa là phải bảo đảm giả thiết suất tối hạn \(\sigma_{A} \) nhử oldukça giai cung tính \(\sigma_{c} \).

Trong công thức \(L_0 \) biết thủ môn quan tính nhỏ nhất của thiết diển, \(L_0 \) biểu thị chiều dài tính toán được xác định bằng tích số giới chiều dài của thành \(L \) với hệ số liên kết \(\mu \), tức là \(L_0 = \mu L \).

Một số giá trị của hệ số \(\mu \) như sau:

1. Hai đầu thành là khóp, \(\mu = 1 \).
2. Một đầu thành bị ngã, đầu kia tức \(\mu = 2 \).
3. Hai đầu bị thằng ngang cắt, \(\mu = \frac{1}{2} \).
4. Một đầu bị thằng ngang cắt, đầu kia là khóp, \(\mu = 0,7 \).

Trong thí nghiệm tiến hành dưới đây, liên kết hai đầu thành là khóp nên \(\mu = 1 \).

V. Trình tự thí nghiệm

Sau khi đã đo cân thằng chiều dài của kích thước theo thiết định ngang cần chính, ta đặt thành thẳng đứng vào giá thí nghiệm. Lực tác dụng vào thành thông qua càng tay dẫn quán chất điểm A có thể là 1: 5, 1:10 để giảm trọng lượng cần thiết tạo nên lực trên thành. Trong lượng của tay dẫn và giống để tạo quay cần được cân bằng bởi đôi trong này đến di chuyển A có thể điều chỉnh được.

Lúc thí nghiệm phải đặt các quay cần từ từ, không được và chuyển liên giá. Cảm sâu mỗi lần tăng lực mỗi ngày để tròn thử nghiệm gốc với đặc điểm cho thành bị cong. Lực lực nên còn nhỏ thành không có khả năng giữ được trạng thái cân bằng ở dạng cong nên sau khi bỏ tác dụng của lực ngang (lương tay xa) thì thành trở về trạng thái ban đầu. Điều đó tiết nên rằng, thành đứng ở trong trạng thái cân bằng ổn định, và lực nên vào thành chưa đặt tại gi impression. Phẹp tục cho đến lựcтrang

201
thái cẩn bằng của thanh ở dạng thẳng mặt ổn định, thanh có khả năng duję trì được cồng khi tác dụng của lục ngằng mặt đĩ. Lục nên tương ứng với trọng thải này của thanh chỉnh là lục tối hạn của tham.

Thì nghiệm sẽ tiến hành hai lần:
Lần 1: Lấy tỷ lệ cánh tay đòn là 1; 5; chiều dài của hai côté l= 150 cm,
μ = 1, do đó chiều dài tính toán La = 150 cm. Ta sẽ xác định lực tối hạn khi thanh bị ướn cồng thành nửa bước sóng.
Làm 2: Lấy tỷ lệ cánh tay đòn là 1; 10; tăng thêm một giới độ ở chỉnh giữ tham, chiều dài tính toán lực đớ sẽ là Lb = 75 cm.

Lực tối hạn trong thì nghiệm hai không những chỉ là lực tối hạn đối với thanh có chiều dài tính toán La = 150 cm. Dưới tác dụng của lực tối hạn bạc hai này, thanh sẽ bị ướn cồng thành dạng hai phần nửa bước sóng mà chúng ta quan sát được nhớ giới phụ ở giữa.

Độ lớn của lực tối hạn xác định bằng cách nhân trong lượng của quá cần với tỷ lệ tương ứng của cánh tay đòn (5 hoặc 10).

VI. Chỉnh lý và tính toán các kết quả thì nghiệm
1. Về sơ đồ thiết bị thì nghiệm.
2. Chỉ lại các đặc tính của thanh thì nghiệm: Vật liệu, chiều dài, hình dạng và kích thước của tiết diện ngang.
3. Tính điện tích, mở men quản tính và bán kính nhóm nhất của tiết diện ngang.
4. Kiểm tra điều kiện ứng dụng công thức Ole. Đối với thợ CT0, độ mảnh tối hạn là λ =100, do đó điều kiện trên có thể viết: λ = 100
5. Nếu điều kiện áp dụng công thức Ole được thỏa mãn ta tính lực tối hạn theo công thức: Pn = 2π2EJ/3L0 (N, KN, . . .)
6. Với Lb = 150 cm và 75 cm.
7. So sánh lực tối hạn tính được bằng tham nghiệm và tính được bằng công thức lý thuyết (tính theo phần trăm) từ đó kiểm nghiệm lại công thức Ole.
8. Tính ứng suất tối hạn (thử nghiệm và lý thuyết).

202
$\sigma_a = \frac{P_a}{F}$; (N/cm2, KN/m2,...)

8. Tính sai số của lực tối hạn xác định theo công thức ở về chiều dài $l_0 = 150$ cm. Nguyên tắc tính sai số xem hướng dẫn ở phần cuối của quyển "Báo cáo thí nghiệm". Sau đó cần có với sai số này để tìm luôn các khôi quả thụ thuộc; nhận xét thí nghiệm và nên nguyên nhân sai số.

Bài 14. Nhiên cứu trường phân bố ứng suất bồng thệ bi quang đan hỏi

I. Mục đích thí nghiệm

1- Xem được các vấn thể hiện quá độ ứng suất chỉnh của một thanh có tiết diện hình chữ nhật chịu nén đúng tâm, để nhận thấy trực quan sự phân bố ứng suất xung quanh diện đạt lực và các mặt cắt có ứng suất phân bố đều theo chiều ngang mặt cắt (chừng mình kết luận trong lí thuyết "sức bền vật liệu").

2- Hiểu cấu tạo và sự dùng được thệ bi quang đan hỏi để quan sát được các loại văn, tội với các mẫu thanh tiết diện chữ nhật và tâm trên chịu nén đội kinh.

II. Mẫu thí nghiệm

Tìm hiểu vật liệu và cấu tạo hai loại mẫu có sẵn của phòng thí nghiệm; cách khử các ứng suất dư trên mẫu.

III. Cơ sở lý thuyết của thí nghiệm quang đan hỏi. Xem chương 7 của cuốn sách "Phương pháp thí nghiệm cơ học", nhà xuất bản QĐND.

IV. Trình tự thí nghiệm

1- Chuẩn bị mẫu thí nghiệm: Đò các kích thước mẫu, nảy mẫu để khử ứng suất dư

2- Kiểm tra nguồn điện cấp cho máy có dung 110 vòng không (nêu quá 110 v sẽ cháy máy)

3- Quay kính phân tích về góc "0" độ
4- Quay hai kính 1/4 bước sóng về góc 45 độ
5- Đặt mẫu vào giữa hai kính 1/4 bước sóng
6- Bắt công tác đến "vàng" hoặc "xanh"
7- Quay trực quang kính phân tích sao cho vuông góc với trực quang kính phân cực
8- Quay hai kính 1/4 bước sóng di các góc - 45 độ và + 45 độ sau với trực quang kính phân cực, để thấy các văn rõ nhất.

203

10. Sau đó cho máu chịu tác động, để quan sát các vấn.

V. Nhã xét kết quả thí nghiệm.

Bây 15. Nguyên nhân của hiện tượng pha hóa mới và cách xử dụng đường cong mới举办 mới số nhận thức tư duy phán và số nhận ngữ phán

I. Mục đích thí nghiệm

1. Nguyên nhân hiện tượng pha hóa mới; giải thích cơ chế pha hóa mới;

2. Nguyên nhân hai loại máy mới của phương pháp thí nghiệm;

3. Cách xử dụng đường cong mới cho mô hình vật liệu bất kỳ với máy.

quốc dân

II. Mẫu thí nghiệm

Đo các kích thước của máy uzun thư tần và uzun ngang phán

III. Mẫu thí nghiệm

Xét nghiệm trên hai loại máy mới: YKI - 600; máy mới của Mỹ FISCТ

IV. Triển thị kết quả

1. Lập mẫu để đo kích thước vân máy

2. Triển thị trong

3. Với số chi trên có dấu số vòng quay với máy Mỹ, quy "0" (với máy YKI - 600)

Khi đó, nguồn điện cung cấp: máy YKI - 600 là 3 pha 380 vôn; máy Mỹ là 1 pha 110 vон.

5. Khi máy đã bị gãy, ghi lại số trên bộ đếm số chi km.

V. Xử lí kết quả

1. Về số chi để thí nghiệm

2. Giải thích nguyên nhân pha hóa mới của máy thử.
<table>
<thead>
<tr>
<th>Đơn vị tính</th>
<th>Dibre tích cm²</th>
<th>Trong lượng (g)</th>
<th>Đặc tính</th>
<th>Quy cách thép cán</th>
<th>Công thức</th>
<th>Ví dụ</th>
<th>Ghi chú</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>d</td>
<td>h</td>
<td>x</td>
<td>L</td>
<td>cm³</td>
<td>kg/m³</td>
<td>cm²</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2.8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3.2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3.6</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4.5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>5.0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>5.5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>6.3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>6.5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Quy cách thép cán
Thép gọc difer cánh福特 8588-57

Ghi chú:

1. L = (a + b) / 2
2. a = b + 2h
3. d = b + 3h
4. h = (a - b) / 2
5. x = (a + b) / 4
6. y = (a + b) / 2
7. z = (a + b) / 2
8. L = (a + b) / 2
9. a = b + 2h
10. d = b + 3h
11. h = (a - b) / 2
12. x = (a + b) / 4
13. y = (a + b) / 2
14. z = (a + b) / 2
15. L = (a + b) / 2
16. a = b + 2h
17. d = b + 3h
18. h = (a - b) / 2
19. x = (a + b) / 4
20. y = (a + b) / 2
21. z = (a + b) / 2
22. L = (a + b) / 2
23. a = b + 2h
24. d = b + 3h
25. h = (a - b) / 2
26. x = (a + b) / 4
27. y = (a + b) / 2
28. z = (a + b) / 2
29. L = (a + b) / 2
30. a = b + 2h
31. d = b + 3h
32. h = (a - b) / 2
33. x = (a + b) / 4
34. y = (a + b) / 2
35. z = (a + b) / 2
36. L = (a + b) / 2
37. a = b + 2h
38. d = b + 3h
39. h = (a - b) / 2
40. x = (a + b) / 4
41. y = (a + b) / 2
42. z = (a + b) / 2
43. L = (a + b) / 2
44. a = b + 2h
45. d = b + 3h
46. h = (a - b) / 2
47. x = (a + b) / 4
48. y = (a + b) / 2
49. z = (a + b) / 2
50. L = (a + b) / 2

Ghi chú:

1. L = (a + b) / 2
2. a = b + 2h
3. d = b + 3h
4. h = (a - b) / 2
5. x = (a + b) / 4
6. y = (a + b) / 2
7. z = (a + b) / 2
8. L = (a + b) / 2
9. a = b + 2h
10. d = b + 3h
11. h = (a - b) / 2
12. x = (a + b) / 4
13. y = (a + b) / 2
14. z = (a + b) / 2
15. L = (a + b) / 2
16. a = b + 2h
17. d = b + 3h
18. h = (a - b) / 2
19. x = (a + b) / 4
20. y = (a + b) / 2
21. z = (a + b) / 2
22. L = (a + b) / 2
23. a = b + 2h
24. d = b + 3h
25. h = (a - b) / 2
26. x = (a + b) / 4
27. y = (a + b) / 2
28. z = (a + b) / 2
29. L = (a + b) / 2
30. a = b + 2h
31. d = b + 3h
32. h = (a - b) / 2
33. x = (a + b) / 4
34. y = (a + b) / 2
35. z = (a + b) / 2
36. L = (a + b) / 2
37. a = b + 2h
38. d = b + 3h
39. h = (a - b) / 2
40. x = (a + b) / 4
41. y = (a + b) / 2
42. z = (a + b) / 2
43. L = (a + b) / 2
44. a = b + 2h
45. d = b + 3h
46. h = (a - b) / 2
47. x = (a + b) / 4
48. y = (a + b) / 2
49. z = (a + b) / 2
50. L = (a + b) / 2
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>4.5</td>
<td>5</td>
<td>6</td>
<td>6.16</td>
<td>6.86</td>
<td>7</td>
<td>7.87</td>
<td>8</td>
<td>8.78</td>
<td>9</td>
<td>9.42</td>
<td>10.27</td>
<td>11.5</td>
<td>12.85</td>
<td>14.6</td>
</tr>
<tr>
<td>10</td>
<td>7.5</td>
<td>9</td>
<td>10</td>
<td>3</td>
<td>3.9</td>
<td>5.3</td>
<td>7.3</td>
<td>8</td>
<td>8.8</td>
<td>9</td>
<td>11.05</td>
<td>14.6</td>
<td>15.1</td>
<td>15.8</td>
<td>17.3</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>3.3</td>
<td>3.3</td>
<td>4.6</td>
<td>5</td>
<td>5.8</td>
<td>6</td>
<td>6.95</td>
<td>10.3</td>
<td>10.7</td>
<td>11.1</td>
<td>12.3</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.6</td>
<td>5</td>
<td>5.8</td>
<td>6</td>
<td>6.95</td>
<td>10.3</td>
<td>11.1</td>
<td>11.8</td>
<td>12.3</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>5</td>
</tr>
</tbody>
</table>

206
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>200</td>
<td>18</td>
<td>6</td>
<td>54.6</td>
<td>42.3</td>
<td>20.6</td>
</tr>
<tr>
<td>16</td>
<td>62.0</td>
<td>48.7</td>
<td>2365</td>
<td>5.17</td>
<td>3755</td>
<td>7.78</td>
<td>970</td>
<td>3.96</td>
<td>4264</td>
<td>5.54</td>
<td>5.54</td>
<td>5.54</td>
<td>5.54</td>
<td>5.54</td>
<td>5.54</td>
</tr>
<tr>
<td>20</td>
<td>76.3</td>
<td>60.1</td>
<td>3871</td>
<td>6.12</td>
<td>4580</td>
<td>7.72</td>
<td>1182</td>
<td>3.93</td>
<td>5355</td>
<td>5.70</td>
<td>5.70</td>
<td>5.70</td>
<td>5.70</td>
<td>5.70</td>
<td>5.70</td>
</tr>
<tr>
<td>24</td>
<td>94.3</td>
<td>74.0</td>
<td>9466</td>
<td>6.06</td>
<td>5494</td>
<td>7.63</td>
<td>1438</td>
<td>3.91</td>
<td>6733</td>
<td>5.89</td>
<td>5.89</td>
<td>5.89</td>
<td>5.89</td>
<td>5.89</td>
<td>5.89</td>
</tr>
<tr>
<td>30</td>
<td>115.1</td>
<td>97.8</td>
<td>4080</td>
<td>6.00</td>
<td>6351</td>
<td>7.55</td>
<td>1688</td>
<td>3.89</td>
<td>8130</td>
<td>6.07</td>
<td>6.07</td>
<td>6.07</td>
<td>6.07</td>
<td>6.07</td>
<td>6.07</td>
</tr>
<tr>
<td>22</td>
<td>220</td>
<td>21</td>
<td>7</td>
<td>60.4</td>
<td>49.9</td>
<td>2884</td>
<td>6.83</td>
<td>4470</td>
<td>8.60</td>
<td>1159</td>
<td>4.38</td>
<td>4941</td>
<td>5.93</td>
<td>5.93</td>
<td>5.93</td>
</tr>
<tr>
<td>16</td>
<td>68.6</td>
<td>52.8</td>
<td>1999</td>
<td>8.61</td>
<td>9245</td>
<td>8.28</td>
<td>1306</td>
<td>4.36</td>
<td>5661</td>
<td>6.02</td>
<td>6.02</td>
<td>6.02</td>
<td>6.02</td>
<td>6.02</td>
<td>6.02</td>
</tr>
<tr>
<td>18</td>
<td>87.7</td>
<td>68.9</td>
<td>5449</td>
<td>9.70</td>
<td>8337</td>
<td>9.15</td>
<td>2158</td>
<td>4.96</td>
<td>9342</td>
<td>6.83</td>
<td>6.83</td>
<td>6.83</td>
<td>6.83</td>
<td>6.83</td>
<td>6.83</td>
</tr>
<tr>
<td>20</td>
<td>97.0</td>
<td>76.1</td>
<td>5384</td>
<td>9.75</td>
<td>9100</td>
<td>9.72</td>
<td>2370</td>
<td>4.94</td>
<td>10401</td>
<td>6.91</td>
<td>6.91</td>
<td>6.91</td>
<td>6.91</td>
<td>6.91</td>
<td>6.91</td>
</tr>
<tr>
<td>22</td>
<td>106.1</td>
<td>83.3</td>
<td>4270</td>
<td>9.00</td>
<td>9961</td>
<td>9.98</td>
<td>2579</td>
<td>4.93</td>
<td>11644</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>24</td>
<td>115.7</td>
<td>94.0</td>
<td>4124</td>
<td>9.04</td>
<td>11122</td>
<td>9.94</td>
<td>2887</td>
<td>4.91</td>
<td>13064</td>
<td>7.11</td>
<td>7.11</td>
<td>7.11</td>
<td>7.11</td>
<td>7.11</td>
<td>7.11</td>
</tr>
<tr>
<td>26</td>
<td>133.1</td>
<td>100.4</td>
<td>7912</td>
<td>9.22</td>
<td>32566</td>
<td>9.94</td>
<td>3190</td>
<td>4.89</td>
<td>14074</td>
<td>7.23</td>
<td>7.23</td>
<td>7.23</td>
<td>7.23</td>
<td>7.23</td>
<td>7.23</td>
</tr>
<tr>
<td>28</td>
<td>142.0</td>
<td>111.4</td>
<td>3273</td>
<td>9.94</td>
<td>3289</td>
<td>4.80</td>
<td>15753</td>
<td>7.31</td>
<td>7.31</td>
<td>7.31</td>
<td>7.31</td>
<td>7.31</td>
<td>7.31</td>
<td>7.31</td>
<td>7.31</td>
</tr>
</tbody>
</table>

207
Chữ số	a	b	r	D	c	b	n	Tt	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	25/1/0.25	16	5	3.5	0.12	2.1	0.9	1.1	0.07	0.05	0.01	0.07	0.02	0.04	0.04	0.06	0.30	0.43	0.42	0.13	0.34	0.34	0.392				
2	3.2/2	32	20	3	3.5	1.2	1.1	1.7	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	0.382			
3	4.2/5	40	25	3	4.0	1.3	1.8	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	0.374				
4	5.0/2	64	25	3	5.8	0.7	2.4	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	0.385					
5	5.5/2	20	0.7	5	1.4	0.7	1.6	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	0.385						
6	5.5/2	40	25	3	5.5	1.2	1.8	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	0.385						
7	5.5/2	64	25	3	5.5	1.2	1.8	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	0.385						
8	5.5/2	20	0.7	5	1.4	0.7	1.6	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	0.385						
9	5.5/2	64	25	3	5.5	1.2	1.8	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	0.385						

Thep goc khong den cach FOCT8510-57
<table>
<thead>
<tr>
<th>Số hình dạng N/a</th>
<th>E</th>
<th>Kích thước mm</th>
<th>Độ đàn hồi</th>
<th>Các tọa độ đối với tâm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>d</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>9.66</td>
<td>100</td>
<td>55</td>
<td>4.5</td>
</tr>
<tr>
<td>12</td>
<td>11.5</td>
<td>120</td>
<td>64</td>
<td>4.8</td>
</tr>
<tr>
<td>14</td>
<td>13.7</td>
<td>140</td>
<td>73</td>
<td>4.9</td>
</tr>
<tr>
<td>16</td>
<td>15.9</td>
<td>160</td>
<td>81</td>
<td>5.0</td>
</tr>
<tr>
<td>18</td>
<td>18.4</td>
<td>180</td>
<td>90</td>
<td>5.1</td>
</tr>
<tr>
<td>19a</td>
<td>19.0</td>
<td>180</td>
<td>100</td>
<td>5.1</td>
</tr>
<tr>
<td>20</td>
<td>21.0</td>
<td>200</td>
<td>100</td>
<td>5.2</td>
</tr>
<tr>
<td>20a</td>
<td>22.7</td>
<td>200</td>
<td>110</td>
<td>5.2</td>
</tr>
<tr>
<td>22</td>
<td>24.0</td>
<td>220</td>
<td>110</td>
<td>5.4</td>
</tr>
<tr>
<td>22a</td>
<td>25.8</td>
<td>220</td>
<td>120</td>
<td>5.4</td>
</tr>
<tr>
<td>24</td>
<td>27.3</td>
<td>240</td>
<td>115</td>
<td>5.6</td>
</tr>
<tr>
<td>24a</td>
<td>29.4</td>
<td>240</td>
<td>125</td>
<td>5.6</td>
</tr>
<tr>
<td>27</td>
<td>31.5</td>
<td>270</td>
<td>125</td>
<td>6.0</td>
</tr>
<tr>
<td>27a</td>
<td>33.9</td>
<td>270</td>
<td>135</td>
<td>6.0</td>
</tr>
<tr>
<td>30</td>
<td>36.5</td>
<td>300</td>
<td>135</td>
<td>6.5</td>
</tr>
<tr>
<td>30a</td>
<td>39.2</td>
<td>300</td>
<td>145</td>
<td>6.5</td>
</tr>
<tr>
<td>33</td>
<td>42.2</td>
<td>330</td>
<td>140</td>
<td>7.0</td>
</tr>
<tr>
<td>36</td>
<td>48.6</td>
<td>360</td>
<td>145</td>
<td>7.5</td>
</tr>
<tr>
<td>40</td>
<td>56.1</td>
<td>400</td>
<td>155</td>
<td>8.0</td>
</tr>
<tr>
<td>45</td>
<td>65.2</td>
<td>450</td>
<td>160</td>
<td>8.6</td>
</tr>
<tr>
<td>50</td>
<td>76.8</td>
<td>500</td>
<td>170</td>
<td>9.5</td>
</tr>
<tr>
<td>55</td>
<td>89.8</td>
<td>550</td>
<td>180</td>
<td>10.3</td>
</tr>
<tr>
<td>60</td>
<td>104.0</td>
<td>600</td>
<td>190</td>
<td>11.1</td>
</tr>
<tr>
<td>65</td>
<td>120.0</td>
<td>650</td>
<td>200</td>
<td>12.2</td>
</tr>
<tr>
<td>70</td>
<td>138.0</td>
<td>700</td>
<td>210</td>
<td>13.3</td>
</tr>
<tr>
<td>75</td>
<td>158.0</td>
<td>750</td>
<td>220</td>
<td>14.5</td>
</tr>
<tr>
<td>80</td>
<td>178.0</td>
<td>800</td>
<td>230</td>
<td>15.7</td>
</tr>
</tbody>
</table>

<p>| 90 | 184.0| 900 | 250 | 17.5 | 28.2 | 30 | 10 | 234 | 173500 | 5010 | 27.4 | 2940 | 3910 | 373 | 4.09 |</p>
<table>
<thead>
<tr>
<th>Số liệu thép L (mm)</th>
<th>Kích thước mm</th>
<th>Dpn không hitch (KQ)</th>
<th>Cơ gỡ rip di di với trực</th>
<th>x-x</th>
<th>y-y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5.34</td>
<td>50</td>
<td>52</td>
<td>6.4</td>
<td>7.0</td>
</tr>
<tr>
<td>6.5</td>
<td>5.9</td>
<td>55</td>
<td>56</td>
<td>4.4</td>
<td>7.2</td>
</tr>
<tr>
<td>8</td>
<td>7.05</td>
<td>50</td>
<td>50</td>
<td>4.5</td>
<td>7.6</td>
</tr>
<tr>
<td>10</td>
<td>8.59</td>
<td>100</td>
<td>86</td>
<td>5.5</td>
<td>7.6</td>
</tr>
<tr>
<td>12</td>
<td>10.64</td>
<td>120</td>
<td>92</td>
<td>6.8</td>
<td>7.6</td>
</tr>
<tr>
<td>14</td>
<td>12.1</td>
<td>140</td>
<td>98</td>
<td>8.9</td>
<td>8.1</td>
</tr>
<tr>
<td>16</td>
<td>14.33</td>
<td>140</td>
<td>82</td>
<td>6.9</td>
<td>8.1</td>
</tr>
<tr>
<td>18</td>
<td>16.42</td>
<td>160</td>
<td>84</td>
<td>8.6</td>
<td>8.1</td>
</tr>
<tr>
<td>20</td>
<td>18.53</td>
<td>160</td>
<td>88</td>
<td>5.0</td>
<td>8.0</td>
</tr>
<tr>
<td>22</td>
<td>18.63</td>
<td>180</td>
<td>70</td>
<td>5.1</td>
<td>8.7</td>
</tr>
<tr>
<td>24</td>
<td>19.74</td>
<td>180</td>
<td>74</td>
<td>5.1</td>
<td>8.9</td>
</tr>
<tr>
<td>26</td>
<td>20.84</td>
<td>200</td>
<td>76</td>
<td>5.2</td>
<td>9.0</td>
</tr>
<tr>
<td>28</td>
<td>20.99</td>
<td>200</td>
<td>80</td>
<td>5.2</td>
<td>8.7</td>
</tr>
<tr>
<td>30</td>
<td>22.21</td>
<td>220</td>
<td>82</td>
<td>5.4</td>
<td>9.5</td>
</tr>
<tr>
<td>32</td>
<td>23.26</td>
<td>220</td>
<td>87</td>
<td>5.45</td>
<td>10.2</td>
</tr>
<tr>
<td>34</td>
<td>24.54</td>
<td>240</td>
<td>90</td>
<td>6.0</td>
<td>10.5</td>
</tr>
<tr>
<td>36</td>
<td>25.58</td>
<td>240</td>
<td>95</td>
<td>5.6</td>
<td>10.7</td>
</tr>
<tr>
<td>38</td>
<td>27.27</td>
<td>270</td>
<td>95</td>
<td>6.0</td>
<td>10.5</td>
</tr>
<tr>
<td>40</td>
<td>30.18</td>
<td>300</td>
<td>100</td>
<td>6.5</td>
<td>11.0</td>
</tr>
<tr>
<td>42</td>
<td>33.65</td>
<td>330</td>
<td>105</td>
<td>7.0</td>
<td>11.7</td>
</tr>
<tr>
<td>44</td>
<td>36.19</td>
<td>360</td>
<td>105</td>
<td>7.5</td>
<td>12.6</td>
</tr>
<tr>
<td>48</td>
<td>40.83</td>
<td>400</td>
<td>115</td>
<td>8.0</td>
<td>13.5</td>
</tr>
<tr>
<td>Độ mặn lb</td>
<td>CT4</td>
<td>CT5</td>
<td>Thấp</td>
<td>Gắng</td>
<td>G6</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>0</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>10</td>
<td>0,99</td>
<td>0,98</td>
<td>0,97</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td>20</td>
<td>0,96</td>
<td>0,95</td>
<td>0,95</td>
<td>0,94</td>
<td>0,97</td>
</tr>
<tr>
<td>30</td>
<td>0,94</td>
<td>0,93</td>
<td>0,91</td>
<td>0,81</td>
<td>0,93</td>
</tr>
<tr>
<td>40</td>
<td>0,92</td>
<td>0,89</td>
<td>0,87</td>
<td>0,69</td>
<td>0,87</td>
</tr>
<tr>
<td>50</td>
<td>0,89</td>
<td>0,86</td>
<td>0,83</td>
<td>0,57</td>
<td>0,80</td>
</tr>
<tr>
<td>60</td>
<td>0,86</td>
<td>0,82</td>
<td>0,79</td>
<td>0,44</td>
<td>0,71</td>
</tr>
<tr>
<td>70</td>
<td>0,81</td>
<td>0,76</td>
<td>0,72</td>
<td>0,34</td>
<td>0,60</td>
</tr>
<tr>
<td>80</td>
<td>0,75</td>
<td>0,70</td>
<td>0,65</td>
<td>0,26</td>
<td>0,48</td>
</tr>
<tr>
<td>90</td>
<td>0,69</td>
<td>0,62</td>
<td>0,56</td>
<td>0,20</td>
<td>0,38</td>
</tr>
<tr>
<td>100</td>
<td>0,60</td>
<td>0,51</td>
<td>0,43</td>
<td>0,16</td>
<td>0,31</td>
</tr>
<tr>
<td>110</td>
<td>0,52</td>
<td>0,43</td>
<td>0,35</td>
<td>-</td>
<td>0,25</td>
</tr>
<tr>
<td>120</td>
<td>0,45</td>
<td>0,36</td>
<td>0,30</td>
<td>-</td>
<td>0,22</td>
</tr>
<tr>
<td>130</td>
<td>0,40</td>
<td>0,33</td>
<td>0,26</td>
<td>-</td>
<td>0,18</td>
</tr>
<tr>
<td>140</td>
<td>0,36</td>
<td>0,29</td>
<td>0,23</td>
<td>-</td>
<td>0,16</td>
</tr>
<tr>
<td>150</td>
<td>0,32</td>
<td>0,26</td>
<td>0,21</td>
<td>-</td>
<td>0,14</td>
</tr>
<tr>
<td>160</td>
<td>0,29</td>
<td>0,24</td>
<td>0,19</td>
<td>-</td>
<td>0,12</td>
</tr>
<tr>
<td>170</td>
<td>0,26</td>
<td>0,21</td>
<td>0,17</td>
<td>-</td>
<td>0,11</td>
</tr>
<tr>
<td>180</td>
<td>0,22</td>
<td>0,19</td>
<td>0,15</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>190</td>
<td>0,21</td>
<td>0,17</td>
<td>0,14</td>
<td>-</td>
<td>0,09</td>
</tr>
<tr>
<td>200</td>
<td>0,19</td>
<td>0,16</td>
<td>0,13</td>
<td>-</td>
<td>0,08</td>
</tr>
</tbody>
</table>
TÀI LIỆU THAM KHẢO

1. Hướng pháp thực nghiệm cơ học - 2001 - GVC-Th.s KH Đăng và Mdn
 GS-TS Hoàng xuân Lương
 Nxb QNĐN

2. Bài tập lên sức bền vật liệu - 1976-Bo môn Cơ sỡ khét quy quy
 Đại học Kỹ thuật Quân sự.

4. Sức bền vật liệu - Đề thi và đáp án - PGS-PTS Hoàng xuán Lương
 PGS-PTS Nguyễn Hữu Bằng
 PTS Nguyễn văn Cường
 PGS-PTS Lê Ngọc Huy
 PGS-PTS Phạm Ngọc Khánh

5. Bài giảng Sức bền vật liệu - Hoàng xuán Lương - Võ kim Cường
 1972-Dai học KTQS.

7. Momentus shears and reaction for continuous Highway Bridges-Aamerican institute of
 steel construction- New York.

8. СБОРНИК ЗАДАЧ по ПОСОПРОТИВЛЕНИЮ МАТЕРИАЛОВ - B.K. Катурина
 -наука-Moskba.

9. СБОРНИК ЗАДАЧ по ПОСОПРОТИВЛЕНИЮ МАТЕРИАЛОВ - Н.М.Беляев - наука-
 Moskba.

10. СБОРНИК ЗАДАЧ по ПОСОПРОТИВЛЕНИЮ МАТЕРИАЛОВ - В.И.Федосюбов - наука-Moskbbi-1970

2/3